
AFIT/GA/ENY/92D-05

AD-A259 143

AN ELECTROMAGNETICALLY-CONTROLLED
PRECISION ORBITAL TRACKING VEHICLE

(POTV)

THESIS

Richard E. Lawrence Jr.
Captain, USAF

AFIT/GA/ENY/92D-05 DTICSELECTE
JANT 11993 11

E

-I
li0• Approved for public release; distribution unlimited

Bmph

93 10411n7



AFIT/GA/ENY/92D-05

AN ELECTROMAGNETICALLY-CONTROLLED

PRECISION ORBITAL TRACKING VEHICLE

(POTV)

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Astronautical Engineering

Richard E. Lawrence Jr., B.S.

Captain, USAF

December, 1992

Approved for public release; distribution unlimited



Acknowledgements

I thank my thesis advisor, Dr. Curtis Spenny, for his ideas, patience, and enthusiastic

support of this research. His office door was always open. I thank my commitee members

Dr. W. Wiesel, Dr. W. Bailey, and Capt C. Hall, for their respective assistance in the

areas of orbits, geomagnetism, and dynamics. I also appreciate the personal interest that

Dr. B. Liebst took in the control aspects of this research. This effort is dedicated to my

dear wife Stephanie.

Richard E. Lawrence Jr.

Accesion For

NTIS CRA&M
DTIC TAB
Urnannounced U

Justification------------

By ..........

Distribution I

Availability Codes

Avail and Ior
Dist Special

DTIC QUAUIJ X iNSPECTED 5

ii



Table of Contents

Page

Acknowledgements .......... .................................. ii

Table of Contents .......... .................................. iii

List of Figures ............. .................................... vi

Abstract .............. ........................................ vii

I. Introduction ........... .................................. 1-1

II. Derivation of Equations of Motion ........ ..................... 2-1

2.1 Coordinate Frames ................................ 2-1

2.1.1 Coordinate Frame Description .................. 2-1

2.1.2 Rotation Matrices ....... ................... 2-1

2.2 Unforced Equations of Motion ....... ................. 2-6

2.2.1 Translational Equations ....................... 2-6

2.2.2 Rotational Equations ....................... 2-11

III. Magnetic Forces and Moments ........ ....................... 3-1

3.1 Geomagnetic Field Description ....................... 3-1

3.2 Transformation to the Orbital Reference Frame ............. 3-2

3.3 Magnetic Forces and Moments for Design # 1 .............. 3-7

3.3.1 Magnetic Forces ........ .................... 3-8

3.3.2 Magnetic Moments .......................... 3-9

3.3.3 Complete Equations of Motion ................. 3-12

3.4 Magnetic Forces and Moments for Design # 2 ............. 3-12

3.4.1 Magnetic Forces ........ .................... 3-13

3.4.2 Magnetic Moments .......................... 3-14

3.4.3 Complete Equations of Motion ................. 3-15

iii



Page

IV. Tracking and Control Issues ......... ......................... 4-1

4.1 State Space Representation of Equations of Motion ...... .... 4-1

4.1.1 Eigenvalues and Stability ...... ............... 4-5

4.1.2 Equilibrium Points ....... ................... 4-6

4.1.3 Controllability ........ ..................... 4-6

4.2 Controller Design and Performance .................... 4-10

4.2.1 Stability Robustness ....... .................. 4-14

4.2.2 Steady-State Controllability .................... 4-15

V. Steady-State Tracking and Docking Performance ...... ............. 5-1

5.1 Vertical In-Plane Conductor Sizing for Orbit Transfer . . .. 5-1

5.2 Steady-State Tracking Performance ..................... 5-4

5.3 General Non-Steady-State Tracking Performance ........... 5-6

5.4 Docking Examples ......... ........................ 5-7

5.4.1 R-BAR ......... ......................... 5-7

5.4.2 V-BAR ......... ......................... 5-8

5.4.3 Z-BAR ......... ......................... 5-9

VI. Conclusions and Recommendations ........ ..................... 6-1

Appendix A. Plots of the Geomagnetic Field in the Orbital Reference Frame A-1

Appendix B. Aerodynamic and Earth Oblateness Effects in Low Earth Orbit B-1

Appendix C. Electrodynamic Propulsion Power Requirements ........... C-1

Appendix D. Approximate Mass and Moments of Inertia for the POTV.. D-1

Appendix E. Controller Design Program Results ...... .............. E-1

E.1 Steady-State Tracking Example ....................... E-1

E.2 R-BAR Docking Approach Example ...... .............. E-14

E.3 V-BAR Docking Approach Example ...... .............. E-27

iv

5



Page

Appendix F. Controller Design Program Listing ..................... F-1

Bibliography ........... ..................................... BIB-1

Vita ........... .......................................... VITA-1

V



List of Figures

Figure Page

2.1. Coordinate Frames and Position Vectors ....... ................. 2-2

3.1. Magnetic Dipole Moment Vector in the Greenwich Frame ............. 3-2

3.2. Design # 1 Conductor Configuration ....... ................... 3-7

3.3. Design # 2 Conductor Configuration ....... ................... 3-13

4.1. Closed-Loop System Block Diagram ....... .................... 4-11

C.1. Electrical Model of the Conductor in Thruster Mode ................ C-2

D.1. Truss Assembly for Conductor Towers ....... ................... D-2

E.1. R-BAR Tracking Vehicle Trajectory in the X-Y Plane ............... E-26

E.2. V-BAR Tracking Vehicle Trajectory in the X-Y Plane .............. E-39

vi



AFIT/GA/ENY/92D-05

Abstract

A propulsion configuration is defined for a precision orbital tracking vehicle (POTV)

that employs electrodynamic forces to control vehicle attitude and position with respect

to another spacecraft. A pair of electrically powered thrusters assist the POTV in posi-

tion control. The vehicle can maintain continuous standoff at close range from another

spacecraft in any direction, has docking capability, and has gross orbital transfer capabil-

ity. These capabilities and the specific design derived for the POTV have been defined by

the requirements of a postulated space facility (ASSET) that salvages structural aluminum

from the external fuel tank of the Space Shuttle. Precision control of the POTV is achieved

by an electrical conductor configuration that makes current-produced thrust continuously

available for independent control of components of vehicle attitude and translation. A

robust tracking controller is designed which guarantees stability and compensates for geo-

magnetic field modeling error. This concept is applicable for vehicles with mass and power

capabilities differing from the particular design described herein and has application in the

areas of attitude control, satellite retrieval, and free-flying platforms.

vii



AN ELECTROMAGNETICALLY-CONTROLLED PRECISION ORBITAL

TRACKING VEHICLE

(POTV)

L Introduction

The use of the earth's magnetic field as a source of spacecraft propulsion was first

proposed in 1965 by Drell, Foley, and Ruderman in their ground-breaking paper "Drag

and Propulsion of Large Satellites in the Ionosphere: An Alfven Propulsion Engine in

Space." (2). Their idea has been used to design electrodynamic tethers for various uses

in earth orbit. Tethers have many non-electrodynamic uses, including payload orbital

transfer, orbital rendezvous, docking, artificial gravity, and gravity-gradient stabilization.

These and many other applications are detailed in NASA's Tethers in Space Handbook

(15). Electrically conducting tethers can be used for power generation and storage, very

low frequency communication, orbital braking, and most importantly for our purposes,

propulsion. In this thesis we design a spacecraft which uses the electrodynamic forces

arising from the interaction of electrical currents with the geomagnetic field to precisely

track other space vehicles at close range, dock with other spacecraft, and perform gross

orbital maneuvers.

There are two important differences between the conductors the POTV uses to con-

duct electricity and the electrodynamic tethers extensively written about in the literature.

First, there are multiple conductors attached to the POTV whereas the literature generally

discusses electrodynamic tethers singly. Secondly, the POTV conductors are supported by

"rigid" towers whose dynamic behavior is much simpler than that of flexible "strings". The

rigidity is provided by lightweight structural webbing that connects all the conductors. The

POTV conductors are also much shorter than the electrodynamic tethers commonly en-

countered in the literature. POTV conductors are expected to be less than one kilometer in

length. A twenty kilometer long electrodynamic flexible tether was supposed to have been
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deployed in August of 1992 from the space shuttle. The Tethered Satellite System (TSS-1)

experiment failed for reasons unrelated to the electrical characteristics of the tether.

How do the POTV conductors use the geomagnetic field to produce thrust? We re-

view the pertinent electromagnetic theory: The force on a current conductor in a magnetic

field is given by the Lorentz equation (15:131):
1

B = IL x B (1.1)

where F is the force exerted on the conductor by the magnetic field, I is the current flowing

through the conductor, L is a vector with magnitude equal to the conductor length which

points in the direction of positive current flow, and B is the magnetic field vector. For our

application, B is the geomagnetic field vector. The Lorentz equation is fundamental to the

thesis work.

The POTV conductors must make electrical contact with the plasma in the earth's

ionosphere in order to close the current loop. Three basic methods for accomplishing this

are presented by Penzo and Ammann (15:120-121):

"* A passive large-area conductor at both conductor ends.

"* A passive large-area conductor at one end and an electron gun at the other end.

"* A plasma-generating l'ollow cathode (PMG) at both ends.

The first two methods are dependent upon the density of the surrounding ionospheric

plasma. We use PMGs for the POTV because this technology is the most promising for

high current densities. The power requirements inherent in electrodynamic propulsion are

discussed in appendix C.

Since the POTV conductors rely upon the geomagnetic field to produce thrust, the

magnetic field strength produced by the current flowing through any one conductor at

another conductor should not be a significant fraction of the geomagnetic field strength.

The magnetic field (scalar) due to a current flowing through a wire is (6:243):

B JA(1.2)

21rp

1-2



where p is the magnetic permeability of free space, I is the current flowing through the wire,

and p is the radial distance from the wire. This equation should be checked when designing

the current capacity of the conductors and the physical separation between conductors.

An electrodynamic propulsion systems is fundamentally different from a conventional

reaction systems in that it produces thrust which is not dependent upon the expulsion

of mass. Any thrust arising from the PMG's ejection of electrons/ions is assumed to

be negligible. Unfortunately, a major finding of this thesis is that it is not physically

possible to independently control all components of vehicle position and attitude with

electrodynamic thrusters (conductors) alone. Thus we add a single pair of electromagnetic

plasma thrusters to provide needed position control capability. We choose high specific

impulse electrically-powered thrusters over conventional chemical thrusters to minimize

fuel consumption. Jahn (8:197) states that plasma thrusters should be able to deliver high

thrust in conjunction with high exhaust velocities.

The POTV is capable of gross orbital maneuvers as well as close-range precision

tracking. Penzo and Ammann (15:168-169) show how an electrodynamic system like the

POTV can be used to change all of the classical orbital elements. Thus we will not go into

detail about large orbital change. We assume that the POTV has enough gross orbital

maneuvering capability to move close enough to a target vehicle for the precision control

system to handle close-range target tracking and docking.

Docking using purely electrodynamic forces has the advantage over reaction systems

of not imparting any momentum to the target vehicle from the exhaust products of the

tracking vehicle. We neglect the possible effects that the ionospheric currents have upon

the target vehicle. There are different approaches to docking in the literature. Two in-

plane methods, V-BAR and R-BAR, are described by Hall (5). We will investigate these

methods as well as an out-of-plane approach (Z-BAR) to see which approach is "best" for

the POTV.

In this chapter we have discussed how the POTV can use the earth's geomagnetic

field as a source of propulsion. Chapter two covers the derivation of the relative trans-

lational and rotational equations of motion for the POTV. In chapter three we describe

1-3
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the geomagnetic field and express it in terms of an orbital frame of reference. Chap-

ter three also covers magnetic forces and moments. Chapter four covers the design of a

POTV closed-loop controller. Chapter five goes into detail about tracking behavior, dock-

ing strategies, and conductor-sizing. The final chapter summarizes important results and

makes recommendations for further research. The appendices contain geomagnetic field

plots, a description of forces not included in the cquations of motion, a controller design

program listing, and plots corresponding to different docking approaches.
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II. Derivation of Equations of Motion

In this chapter we derive the relative translational and rotational equations of motion

for the POTV. The equations of motion derived herein include only forces and moments

due to gravity. Magnetic forces and moments are described in chapter three. We describe

the coordinate frames necessary for the derivation and the rotation matrices that relate ýhe

coordinate systems. We also perform a steady-state analysis of the equations of motion.

2.1 Coordinate Frames

2.1.1 Coordinate Frame Description Figure 2.1 shows the coordinate frames that

are used in the derivation of the relative equations of motion of the tracking vehicle

(POTV). A description of each coordinate frame follows:

" Geocentric Equatorial Frame (i): The origin of the i frame is at the center of the

earth. The il unit vector is defined to point in the vernal equinox direction. The i3

unit vector is collinear with the earth's rotation axis and points out of the earth's

geographic north pole. The i2 unit vector completes the right-handed orthogonal set.

An excellent description of this "inertial" frame is found in Bate (1:55).

"* Orbital Reference Frame (a): The origin of the a frame is at a point on a reference

orbit. This point usually, but not necessarily, coincides with the center of mass of a

target vehicle. 61 points radially outward along a line connecting the center of the

earth and the a frame origin, 62 points along the orbital velocity vector of the target

vehicle. 63 points "northward" out of the orbital plane.

"* Body-Fixed Reference Frame (b): The origin of the b frame is at the tracking vehicle's

center of mass. The coordinate frame unit vectors coincide with the principal axes of

inertia of the tracking vehicle. This frame is referred to as the body frame henceforth.

2.1.2 Rotation Matrices A rotation matrix is a special type of matrix that allows

a vector defined in terms of the unit vectors of a coordinate system to be expressed in

terms of the unit vectors of another coordinate system. We will derive the rotation matrix
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bI r-rO+8

- (rO + x)cl + yc2 + zc3

b2 body reference frame (b)

c2i

orbital reference frame (c)

ro reference orbit

earth center

Figure 2.1. Coordinate Frames and Position Vectors

lZC that allows a vector expressed in inertial coordinates to be expressed in terms of

orbital reference frame coordinates. We say that the matrix RVC transforms the vector

from the i coordinate system to the 6 coordinate system. This matrix is of use in section

3.2 where we derive an expression for the geomagnetic field in terms of orbital reference

frame coordinates.

The size, shape, and inertial orientation of the reference orbit and the location of

the target vehicle within the reference orbit must be known in order to derive R"'. This

information is contained in a set of six orbital elements defined by Bate (1:58-60):

"* The semi-major axis a.

"* The eccentricity e.

"* The orbital inclination angle i.

"* The right ascension of the ascending node ft.
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"* The argument of periapsis w.

"* The argument of latitude at epoch u0 .

We assume that the reference orbit is circular in order to simplify the derivation of the

relative equations of motion. Thus the eccentricity e equals zero and the argument of

periapsis w is undefined. The orbital radius r0 (r0 _ a) specifies the size of the circular

reference orbit. The right ascension of the ascending node R and the inclination i com-

pletely determine the orientation of the orbit in inertial space. Note for future reference

that i is zero and that fR is undefined for an equatorial orbit. The argument of latitude at

epoch angle uo locates the target vehicle within the reference orbit at initial time (epoch)

to. We define a new angle u that locates the target vehicle within the reference orbit at

any later time t. The concept of orbital mean motion n is used to write:

u(t) = "o + n(t - to) (2.1)

where
ýGM,q

n 3
ro

where G is the universal gravitational constant and MO is the mass of the earth. The

angular velocity w of the 6 frame with respect to the i frame is simply n63.

Thomson (22:33-36) derives the rotation matrix I'R that transforms from the inertial

frame to the orbital reference frame. The process of rotating from the i frame to the 6

frame is described by rotating an angle R about the inertial i axis, then rotating an angle

i about the new i axis, and finally rotating an angle u about the newest i axis. The angles

fl, i, u are often referred to as a 3-1-3 Euler angle set. The rotation matrix R?" is formed

by the product of three intermediate rotation matrices:
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where
cos u sinu 0

R,(U)= -sinu UCollU 0

0 0 1

1 0 0

0 cos i sin i

0 -sini cosi

cosfl sinfa 0

-sinfl cosfl 0

0 0 1

The resulting rotation matrix Ril is calculated to be:

cos l cos u - sin fl cos i sin u sin fl cos u + cos fl cos i sin u sin i sin u

-cosflsinu-sinflcosicosu -sinflsinu+cosflcosicosu sinicosu (2.2)

sin fl sin i - cos fl sin i cos i

Another important coordinate transformation is that relating the orbital reference

frame to the body frame. The rotation matrix Rob we derive is important in section 3.3

where an expression for magnetically-induced moment is derived. Here we use the concept

of yaw, roll, and pitch angles to represent the rotational angles needed to relate the frames.

These angles are collectively referred to as orientation or attitude angles. The process of

rotating from the ý frame to the b frame is described by rotating an angle •t about the

i axis, then rotating an angle 0(2 about the new j axis, and finally rotating an angle iP3

about the newest 2 axis. Rimrott (18:329-330) refers to these angles with this particular

sequence of angular rotations as "Cardan angles of the first kind". The rotation matrix

RCb is formed by the product of three intermediate rotation matrices:
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where

1 0 01
R.(0'l) [ 0 cos t'1  sin b1 j

0 - sin0, cos ?z]

cos 0 2 0 -sin 0 2

(02) 0 1 0

sin 0 2  0 COS 02

cos 03  sin 03 0

•(03)= sin #3 COS43 0

0 0 1

The resulting rotation matrix R16C is calculated to be:

Cos 1P2 Cos '0 Cos t 1 sin4'3 + sin t 1 sin I2 cos 3 sin tP sin ? 3 - cos 4I sin I2 cos 3

cos 02 sin 03 cos tbi cos tk3 - sin 0i sin IP2 sin 03 sin 01 cos 03 + cos 01 sin 42 sin 13

sin U4' 2  -Sin 01 COS 0 2  Cos 1'1 Cos ?P2

If we assume that the orientation angles are "small", then we can use small-angle assump-

tions to lineaxrize the 7Re' matrix. For small angle 0:

sing8 ,: e

cos# ,,t 1

The products of small angles are assumed to be negligible and are not included in the

linearized form of the matrix. Thus for small angles 4'1, 02s, 10s, the linearized form of Re'

is:
1 03 -02]

Reb= _03 1 01 (2.3)

02 -01i 1

We assume that "small" angles are less than 15° for the purposes of this research.
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Rotation matrices are orthogonal. The inverse of an orthogonal matrix is equal to

its transpose. Thus it is easy to form the linearized version of 6bc:

&b c = = 03 1 - (2.4)

2.2 Unforced Equations of Motion

The translational equations of motion of the tracking vehicle relative to the target

vehicle are derived by Wiesel (24:78-80) and by Kaplan (9:108-111). The derivation of

the small-angle relative rotational equations of motion in section 2.2.2 is believed to be

partially original.

2.2.1 Translational Equations The complete derivation of the relative translational

equations of motion is not shown by Wiesel or Kaplan. All steps of the derivation are

explicitly shown here to illustrate linearization techniques used later in the thesis.

We want to derive an expression for the inertial acceleration of the tracking vehicle

and expressions for the forces acting on it. These expressions will be substituted into

Newton's second law to give the translational equations of motion:

f = M,&• (2.5)

where •.F is the sum all external forces, M, is the mass of the tracking vehicle, and a is

the inertial acceleration of the tracking vehicle.

We derive the inertial acceleration first. Refer to the position vectors shown in

figure 2.1. The inertial position vector of the tracking vehicle is:

r, + =(ro + x)61 + y02 + z (2.6)
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where r is the distance from the center of the earth to the ý frame origin and x, y, z are

the ý frame components of the relative position vector b. The inertial velocity is:

dr
dt

Sd= a•d__+w__ xr_

(i6c + 362 + i6 3 ) + nf3 x ((to + X)c1 + Ye2 + Z)

= (. - ny)61 + (ý + nro + nx)e2 + i6 3  (2.7)

The inertial acceleration is:

= d .d

dt dt
ad .id d ( d= t t( -) + _ x (f d .)

= ((i - ni)4 + (0 + ni)62 + -;6) + n63 X ((i - ny)ýj + (j + nro + nx)62 + -iQ))

= (i - 2n - 2ro - n2x)61 + (ij + 2ni - n2y)e 2 + zie 3  (2.8)

We have derived the acceleration part of Newton's second law. Now -e decide which

external forces to include in the equations of motion. There are several types of external

forces that could act on the tracking vehicle. The largest of these in magnitude for low

earth orbits are gravitational force, magnetic force, and aerodynamic drag. In section 3.3

a linearized expression for magnetic force is derived. Aerodynamic drag is described in

appendix B. Now we derive a linearized expression for the gravitational force F.. The

general formula for the gravitational force on the tracking vehicle is:

F -GMMt

Substituting E = (to + X)I + 02, + z6s into this formula yields:

-GMM,((ro + x)61 + Yi2 + zý3 ) (2.9)

(r 2 + 2rox + X2 + y2 + z2)
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The tracking vehicle must be able to track the target vehicle at "close" range. We

assume that "close" means that x <: ro, y < r0, and z < ro. The expression for gravita-

tional force (eq. 2.9) is simplified (linearized) by making these assumptions. The following

steps are used in the linearization of the gravitational force expression:

"* A partial binomial series expansion is used.

"* Products of "small" relative position components x, y, and z are neglected.

The binomial formula (19:110) states that an expression of the form (a + b)', where b < a,

is equivalent to the series:

(a + b)" = ad + na--b +... (higher order terms)

Using this idea to simplify the denominator of equation 2.9:

(•+2 o+ •2 + Y2 + z2)-j •0 2 0)-
(ro+ 2rox + x+ 1 +z) (r + 2rox)A

c_ r.3- 3r0
4

x

Substituting this result into equation 2.9 and remembering n = N/GMO/r3:

F -GMM,((ro + x)61 + Yc2 + z 3 )(r 3 - ro4)

-MMt ((ro-2x)6
1 + 2 +Z)

t- -Mtn 2 ((ro - 2r)Z% + 02 + ze 3) (2.10)
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Now, substituting the inertial acceleration (eq. 2.8) and the gravitational force (eq. 2.10)

into E F = Mta, we obtain the relative translational equations of motion:

i-24 -3n 2 x = F,.,,.. (2.11)

,,.+ 2ni =F (2.12)

+n2Z F,.. (2.13)

where F..,h,, , F.,Y.., F2 .th.r are the 6 frame components of the sum of all non-gravitational

forces acting on the tracking vehicle. Wiesel (24:78) calls this set of equations the Clohessy-

Wiltshire equations. These differential equations are linear, coupled, and have constant

coefficients. When ,kher = 0, we call these equations the unforced relative translational

equations of motion.

2.2.1.1 Solution to the Unforced Equations The unforced equations can be

solved in closed form (24:80-81) to yield:

z(t) = - (0)+3x(0) cosnt+I sin nt+ 4x(0) + 2 () (2.14)

z(t) = y(O) - (3j(0) + 6nx(0))t + (!j(o) + 6z(O) sin nt + 2 cos nt (2.15)

2:)
n

z(t) = z(0) cos nt +-1() sin nt (2.16)
n

We note that x(t) contains only sinusoidal and constant terms. z(t) contains purely sinu-

soidal terms. Interestingly, y(t) contains the linear term (3y(0) +- 6n(0))t that grows with

time as well as sinusoidal terms and constant terms. This means that the tracking vehicle

will move steadily away from the target vehicle in the y direction if x(O) and/or y(O) is

non-zero. We see in section 2.2.2.1 how the solutions z(t), y(t), z(t) affect the solutions of

the relative small-angle rotational equations of motion.

The unforced relative translational motion of the tracking vehicle is solely dependent

upon its initial relative position and relative velocity. Except for two special cases, the
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tracker will never stay at its initial relative position. One trivial case occurs when all the

relative positions and velocities are zero. The origin of the body frame and the origin of

the orbital reference frame are then coincident. In the absence of any perturbing forces,

the tracker will stay at this zero reference state. A more interesting special case occurs

when the relative velocities are all zero, the relative positions x(O), z(0) are zero, and y(O)

is any non-zero value. Then the tracker will remain at a distance y(O) ahead or behind the

target vehicle in the same orbit.

2.2.1.2 Steady-State Behavior Eventually we would like to design a position

controller for the tracking vehicle which will allow it to track steady-state values of x, y,

and z. We refer to these steady-state values as x,,, ys,, and z,,. Now we examine the

steady-state forces required to maintain steady-state position tracking. In the steady-state,

= = i = y = g= i = - = 0. The relative translational equations of motion (eqs. 2.11,

2.12, 2.13) in the steady-state become:

F... = -3n 2 Mrx.. (2.17)

F,.° = 0 (2.18)

f, = n2 Mtz,, (2.19)

So the steady-state force required for the tracker to standoff a fixed x (vertical) and/or

z (out-of-plane) distance from the target vehicle is directly proportional to the standoff

distance, the tracking vehicle mass, and the square of the orbital mean motion. We note

that three times as much force is required to maintain the x component of the standoff

distance as is required to maintain the z component. This fact makes out-of-plane standoff

less "costly" than vertical in-plane standoff. No steady-state force is required to maintain

the y component of the standoff distance. We note that a force in the negative x direction

(down) is needed to maintain a constant positive (up) x component of the standoff distance.

We also observe that the required steady-state force for a given standoff distance becomes

smaller as the reference orbital radius r0 increases since n2 = GM,/ro.
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2.2.2 Rotational Equations Kaplan (9:201-202) and Wiesel (24:145-148) derive the

small-angle rotational equations of motion of the gravity-gradient satellite for the purpose

of studying attitude stability. The body attitude angles that these authors use are defined

with respect to an orbital reference frame attached to the body. The important difference

in the following derivation is that the orientation angles are defined with respect to an

orbital reference frame attached to another body (the target vehicle). The equations we

derive are the rotational equivalent of the Clohessy-Wiltshire translational equations of

motion.

We start with Euler's general rotational equations of motion:

A•i + (C - B)w 2 wa = M,

Baj2 + (A - C)wiw 3  = M2 (2.20)

Ccj3 +(B- A)wIw 2 = M 3

where A, B, C axe the principal moments of inertia, w1 , W2 , w3 are the body frame

components of the inertial angular velocity vector W, and M1, M 2, MA3 are the body frame

components of the sum of all external moments. We need to express the inertial angular

velocity w and the external moment M in terms of the orientation angles !ih, tb2, and ib3.

There are several possible external moment sources acting on the tracking vehicle.

Only the gravitational moment M_ is examined in this section. In section 3.3 an expression

for magnetic moment is derived. Any moment arising from aerodynamic drag is assumed

to be negligible.

Wiesel (24:145-147) derives the gravitational moment in body frame coordinates:

Mo. = 3GMS YZ(Cc- B)

M92 = 3GM*XZ(A-C) (2.21)

M,3 = 3GMs XY(B - A)

where X, Y, Z are the body frame components of the position vector r. Here the derivation

diverges from that of Wiesel and Kaplan because our position vector r includes the relative
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position components x, y, z. We need to express the given gravitational moment in terms

of the orientation angles. We begin by expressing r in body frame coordinates:

hr = gZcb ar

where the linearized form of Jcb is used (eq. 2.3) because the orientation angles are assumed

to be small. Neglecting the products of small variables x, y, z, '01, '02, and 03 we get:

_ r (ro + x)bl + (-ik 3 ro + Y)P 2 + (0 2 ro + z)b 3

which can also be stated:

ir = Xbj + Yb2 + Zb3

where

X = ro+X

Y =- -03ro+ y

Z t- k2ro-+-z

Again neglecting the products of small variables, the terms YZ, XZ, XY are evaluated:

YZ =O

XZ = r20b2 + roz (2.22)

XY -ro 3 + roy

The denominator r-I of the moment terms is linearized:

r-s= (r 2+2rox+X2+ y2+z2)-j

- (r2-+2roz)- 1  (2.23)

rO5-5ro6x
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Finally substituting equations 2.22 and 2.23 into the gravitational moment equa.tions

(eq. 2.21), we get the linearized form of M._:

M," "0

M,2 = 3n2( -+)(A - C)

M,. _= 3n 2(_,• + ±)(B - A)

We now have the gravitational moment part of the small-angle rotational equations

of motion. Now we derive the inertial angular velocity:

w =nc 3 + ?1+ ý12b + 1 3b 3

where the linearized form of VGMe/Rs is:

GM, - (GM,)1(r)-I

= (GM,)I(r2 + 2rox + X2 + p2 + z)-

S(GMo)i(r 2 r.

Then the inertial angular velocity becomes:

3_

_= (GM.)i(r• - ro r)ý3 + b1b1 + IPbA + b313

Using the linearized rotation matrix Reb (eq. 2.3) to transform the ý3 term into the

frame (again neglecting the products of small variables) we derive the linearized form of

the inertial angular velocity:

jg = (-nIO2 + ýI)i, + (-•ij + ý2)b2 + (n + ý3 - 3-nr ) 3 (2.24)
2r-
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We use equation 2.24 to find L.I, w2 , w3 :

j d 3n•i
_W = (01 - n 02 )bl + (02 + n 1 )b2 + (ýb3  -- )b 3

dt - 2r0

and the products w2w3 , w1I 3 , wlw 2 :

W2 W3  (0 V1(3+n-- - ý

2r0

W1W3  N, ~- n0 2 )(' 3 + n- ) 3n ~ -n20

WIW 2 = ( - n 2 )(ý2 + nip) _ 0

Substituting these results into the general rotational equations of motion (eq. 2.20), we

obtain the small-angle relative rotational equations of motion:

A(j- nýb2 ) + (C - B)(ný 2 + n2401) = 0 (2.25)

B(ý 2 + n~j) + (A - C)(nj 1 - 4n 2 ,02 - 3n=2Z = 0 (2.26)
r0

-) + 3n (B + 2(3n ny
C( - - (B- A)(3n _ = 0 (2.27)

2r0 r

These differential equations are linear, constant-coefficient, and coupled. The -3n 2z/ro

term in the second equation and the -3ni/2ro and -3n 2 y/ro terms in the third equation

do not appear in the rotational equations of motions derived by Kaplan and Wiesel. These

"extra" terms arise from the definition of the body orientation angles. These angles were

defined with respect to an orbital reference frame attached to awtother body (the target

vehicle) instead of an orbital reference frame attached to the tracking vehicle.

2.2.2.1 Unforced Equation Observations The solutions x(t), y(t), z(t) (eqs.

2.14, 2.15, 2.16) to the relative translational equations of motion can be inserted into the

"extra" terms in the relative rotational equations of motion to yield:

A(ý, - ný 2) + (C - B)(n. 2 + n 2 1 ) = 0

B(,2 + n~51) + (A - C)(n~', - 4nt02- 3nn(z(O)cont + •(0)sinnt))= 0
r~0
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S3n((2y(0) + 3nx(O)) sinnt + ((O)cosnt))-(• 2'') + (B - a)(3n ¢3b

3n2 (y(0) - (3y(0) + 6nx(0))t + (•y(0) ± 6x(0))sin nt + •i(0) cos nt - (0)

r0

Note that these equations become the equations shown in Wiesel's text (24:148) when the

relative positions and velocities are zero. We call the equations that we have derived here

the "unforced" equations because we assume no forces other that gravitational axe acting

on the tracking vehicle. In another sense we could think of these equations as the rotational

equations shown in Wiesel's text with added forcing functions which result from non-zero

initial relative positions and velocities. Wiesel shows that the solutions to the unforced

equations are oscillatoiy in nature as long as the condition C > B > A is satisfied.

Although we do not explicitly solve the relative rotational equations of motion for

01 (t), 0 2(t), i 3(t), we can make general comments about the nature of the solutions.

We assume that C > B > A. Then 0 1(t) is purely sinusoidal. tk2 (t) is also sinusoidal

because the forcing function z(t) is sinusoidal. 03 (t) is more interesting because while

.+(t) is sinusoidal, y(t) contains linear and constant terms in addition to sinusoidal terms.

Therefore if x(O) is non-zero, iks(t) grows larger with time until the small-angle assumption

becomes invalid. Then the linearized equation in 03 (t) does not apply to the non-linear

behavior of xi3 (t).

2.2.2.2 Steady State Behavior We want to eventually design an attitude con-

trol system for the tracking vehicle which will allow it to regulate the steady-state values

of 01, 02, and 03 to zero. We refer to these steady-state values as 0j.., 02.., and ,/s,. Now

we examine what moments are required to maintain steady-state attitude regulation. In

the steady-state, all the orientation angle rates and position rates go to zero. Note that the

relative position variables are allowed to be non-zero in the steady state. The small-angle

relative rotational equations of motion (eqs. 2.25, 2.26, 2.27) in the steady-state become:

M,.. = n2(C - B)O{1 .. (2.28)

My.. -4n 2( A - C)iP2 ..- 3n 2 (A - C) (2.29)
ro
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M, = 3n 2(B - A)?b3.. - 3n 2(B - A) y., (2.30)r0

We usually want ¢'.., , and 03, to be equal to zero to avoid rotational inertia during

a docking maneuver. From these equations we then expect that M,,* is equal to zero,

My.. is constant and proportional to the steady-state z component of position, and M,.. is

constant and proportional to the steady-state y component of position. We expect that the

forces required to generate these steady-state moments are much smaller than the forces

required for steady-state position standoff when 01.., tP2.., and 03. are zero.
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III. Magnetic Forces and Moments

In this chapter we complete the linearized relative translational and rotational equa-

tions of motion by deriving expressions for magnetic force and moment.

3.1 Geomagnetic Field Description

The geomagnetic field strength B is equal to the negative gradient of the scalar

magnetic potential Om (14:2.22):

B V ,

The f,, that one chooses for analysis purposes depends upon the level of accuracy one

wants and the complexity that one is willing to tolerate. Unfortunately, the more accurate

of a model desired, the more complex fm becomes. The most accurate model is the

multipole expansion model (also known as the spherical harmonic analysis model) (7:41).

The scalar magnetic potential for this model is:

N n
§m re •-Sn-- r e -- (g' cos mA + hm sin m,\) Pn(sin 6) (3.1)

n=1 m=O

where r* is the radius of the earth, 6 is the magnetic co-latitude, A is longitude, and

Pn,(sin6) is the associated Legendre function of order m and degree n (19:149). The

coefficients g•' and h• are known as the Schmidt coefficients. Several are tabulated in

NASA TM 82478 (14:2.23).

We will instead use the simple dipole model (21:33-34) to represent the geomagnetic

field. The scalar magnetic potential for this model is equivalent to the first term of the

scalar magnetic potential expression of the multipole expansion model (eq. 3.1). The

farther one moves from the earth, the more accurate the simple dipole model becomes

because the higher order multipole terms decrease in magnitude more quickly than the

dominant dipole term. The scalar magnetic potential for the simple dipole model is:

§ m = M-L (3.2)
r3
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X = 111 g3

S= -78.5

g I

?g2
m

Figure 3.1. Magnetic Dipole Moment Vector in the Greenwich Frame

where m denotes the magnetic dipole moment of the earth and r is the position vector

from the center of the earth to the tracking vehicle. The m vector originates at the center

of the earth and passes through the earth's surface at the austral magnetic pole in the

southern hemisphere. This model may give a magnetic field magnitude error of up to 30%

at the earth's surface according to Hess (7:39).

3.2 Transformation to the Orbital Reference Frame

The relative translational equations of motion (eqs. 2.11, 2.12, 2.13) were derived in

orbital reference frame (ý) coordinates. An expression for the magnetic force B in 6 frame

coordinates is derived in this section. This allows the convenient derivation of the magnetic

forces acting on the tracking vehicle through the use of the Lorentz equation (eq. 1.1).
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Using the simple dipole model, the geomagnetic field is expressed:

B_ = -7#

- V Mr (3.3)

In order to derive 6B we must:

"* Express m in the ý frame (4m_).

"* Perform the dot product m. r.

"* Apply the gradient operator V.

This particular method of deriving the magnetic field in terms of orbital reference frame

coordinates was suggested by Wiesel (25).

The magnetic dipole moment vector is easily visualized in a coordinate frame we

designate the greenwich frame (see figure 3.1). The j frame differs from the inertial geo-

centric equatorial frame (i) by a single rotation about the inertial z-axis (i3). The angle

of rotation 0, locates the greenwich prime meridian with respect to the inertial x-axis (il).

This angle is called the sidereal time and is calculated using the following simple formula

(1:99):

o, = io + w,(t - to) (3.4)

where #,, is the value of 0, at reference time to and w9 is the angular velocity of the earth's

rotation. The American Ephemeris and Nautical Almanac can be used to determine #,°.
The angles 6 and A shown in figure 3.1 are the latitude and longitude, respectively, of the

austral magnetic pole. These angles completely determine the direction of the magnetic

dipole moment vector m in the greenwich frame:

Orn = M cosg 6cos Al + m cos 6 sin 4 2 + m sin6• 3  (3.5)

where the magnitude of the magnetic dipole moment m is approximately 8.1. 10"6 tesla-

meter3. For the austral pole 6 t_ -78.5* and A c_ 1110.
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How is m transformed from the j frame to the ý frame? In section 2.1.2 we derived

the rotation matrix eIC (eq. 2.2) that transforms from the inertial frame to the orbital

reference frame. Thus 6m is represented:

where
cosOF -sin8a 0

J(O,)= sinO, cosO, 0

0 0 1

Then we calculate the elements of Ric:

Z1Zu = cos(R - #,)cosu- sin(fl -O,)cosisinu

IZ12 = sin (fl - 0,) cos u + cos (fl - 00) cos i sinu

R13 = sin i sin u

R21 = - cos (1 - #,) sin U - sin (R- 0.) cos i cos u

IZ22 = - sin (fl - 1) sin u + cos (f- )cos i cos u

IZ23 = sinicosu

R31 = sin(fl- O9)sini

sZ32 = -cos(fl- 9)sini

IZ33 = cos i
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The transformation of m from the ý frame to the 6 frame yields the 6 frame components

of m:

m, = m(cos6 cos A(cos (R - #,)cosu - sin(12 - 0,) cos i sin u)

+ cos b sin A(sin (0 - #,) cos u + cos (0 - P,) cos i sin u)

+ sin § sin i sin u)

M2 = m(cos 6 cosA(- cos (f1 - #,) sin u - sin (R - 0,) cos i cos u)

+ cos 6 sin A(- sin (fl - O1) sin u + cos (ft - 0,) cos i cos u)

+ sin 6 sin i cos U)

m3  = m(cos6cosAsin(ft- 04)sini

-. cos b sinA cos (f? - 09) sin i

+ sin b cos i)

which when simplified by the trigonometric identities:

sin(A B) = sinAcosB ± cosAsinB

cos (A B) = cos A cos B T sin A sin B (3.6)

become:

m, = m(cos6cosucos(fl- 9,- A)-cosicos6sintusin(fl- , - A)+sinisin6sinu)

M2 = m(- cos6sinucos(fk -9,- A) - cosicos6cosusin(fl - - A) + sinisin6cosu)

m3  = m(sinicos6sin(ft-9, - A) + cosisia6)
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We introduce some simplifying notation before performing the dot product (m r).

Let

O = cos~cosucos(fZ-O2 -A)-cosicos6sinusin(Q-G ,-A)+sinisinbsinu

/# = -cosbsinucos(fl-eO-A)-cosicosbcosusin(Q-9 ,- A)+sinisin6cosu

-y = sin i cos b sin (fl - 0, - A) + cos i sinb

where we note for future reference that a, 0 are composed of purely sinusoidal components

while -y includes the constant term cos i sin b as well as a sinusoidal component.

Now we can write Zm = m(al + M•2 ± 763 ). Remembering:

6!: = (rO + X)eI + Y22 + Z63

the dot product m r becomes:

m' _ = m(a(ro + X) + 3y + 7Z)

The remaining hurdle in the evaluation of the magnetic field B in 6 frame coordinates

is the application of the gradient operator:

V, (m (a(ro + x) + f3y + -YZ)\
(20 + 2ro0x + X2 + y2 + Z2)1J

which can also be expressed:

ý1+~ a x 62 3) (M (,2 +- +p ZT

k~~~C1~ + c+- ,\r+2rox +X 2 +y2 + Z2)

Performing the partial differentiation, making a binomial approximation to the resulting

denominators, and neglecting the products of the small relative position components x, y,

z, we arrive at the linearized expression for the magnetic field in orbital reference frame
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bI (up)

1
Ilu 11

L2 2U

b2 (ecut) M~ • / 12w

:13lBIldJX1

b3 (north)

Figure 3.2. Design # 1 Conductor Configuration

coordinates:

al = m ((2or- 6ax + 3#y-t- 3-yz)l + (-/,ro + 3#x +3ay)e2+ (--fro+ 3-yx + 3z)6a3) (3.7)

Appendix A shows plots of these orbital frame components of the magnetic field as func-

tions of time assuming the relative position components z, y, z are all zero. The plots

are done for a 400 km orbit at several different inclination angles. From these plots the

reader can see that components disappear at certain times in the orbit. Both in-plane

components or the out-of-plane component disappear entirely at some inclinations. This

becomes important in the next chapter where we investigate the subject of controllability.

S.3 Magnetic Forces and Moments for Design # I

An electrical conductor configuration is desired that allows independent control over

every component of tracking vehicle position and attitude. Two designs are proposed in
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this section to accomplish that goal. In chapter four we show that the second design is

more controllable than the first design. Design # 1 is shown in figure 3.2. There are a total

of six conductors: two on the in-plane body x-axis (one "up" and one "down"), two on the

in-plane body y-axis (one "east" and one "west"), and two on the out-of-plane z-axis (one

"north" and one "south"). Lightweight structural webbing exists between the conductors

to provide rigidity. The filled-in circles at the ends of the conductors shown in figure 3.2

represent the plasma generators (PMGs) mentioned in chapter one.

3.3.1 Magnetic Forces The conductor lengths and currents are labeled in figure

3.2. Each conductor current is controlled independently of the other currents. The Lorentz

equation (eq. 1.1) is used to determine the force on each conductor:

EB = IL x B (3.8)

We remind ourselves that the length vector L is defined to point in the direction of positive

current flow. The individual forces on each conductor are summed to determine the overall

magnetic force on the tracking vehicle:

6_B = Z(I2L x 6B)

The summation IL is conveniently expressed in the body frame:

1:1L_ = . + Illl&, + I 2.1, 2 + 121I2 2 + .1231,3 + 1313.&3

= 11(1h. + 1h,)bk + 12(12. + 12,)62 + 13(13. + I43)b3
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Using the linearized form of the rotation matrix TVbc (eq. 2.4) to transform to the 6 frame

we get:

PL = (l(Ih. + I1,) - ),(312(1.2 + 12-)+ ,0213(13. + 13.))61

+ ('0311(h• + II,) + 12(12. + 12.) - t113(IS. + 43.))ý 2

+ (-211(I,. + II,) + 0112(12. + 12.) + 13(h. + 43.))6

We derived an expression for 8B in the previous section where we linearized with

respect to the "small" position and attitude variables x, y, z, k, ?k2, and ?P3. In the next

chapter we use control terminology to define these variables as the states of the tracking

vehicle system. When we perform the cross product in the present derivation we will

linearize with respect to the controls as well as with respect to the states. The tracking

vehicle controls are the conductor currents. The products of states and the products of

states and controls are neglected. This assumption greatly simplifies the cross product

8F_ = E(IeL x 6B). We calculate the total linearized magnetic force on Design # 1:

7 = m ,(712(12.r+ 12.) + 03(13. + 13.))

+ ( 2a13(13- + 13.) + 711t(II.;+ 1,)) . 2  (3.9)

+ /M li(II. + I,,) 2cd2(12. + 12.,) 6.
+ r3 - r03 ]•

3.2.2 Magnetic Moments We use the following general expression to evaluate the

magnetic moment on the tracking vehicle:

IM = 5(I_ x (IPL x •B))

where r_ represents the moment arm from the tracking vehicle center of mass to the center

of applied magnetic force for each conductor. We assume that the conductors are short
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enough so that we can reasonably assume that the center of magnetic force of a conductor

coincides with the geometric center of that conductor.

The magnetic field in e frame coordinates is known (eq. 3.7). We want to calculate

the magnetic moment in terms of body frame coordinates in order to easily insert the

resulting expression into the small-angle relative rotational equations of motion. Using the

linearized form of R' (eq. 2.3) to transform B to the b frame yields:

IB = 'rn(2aero - ax + 3f3ly + 3-y z + 102 - f303 )b1

+ (-,Oro + 3/#x + 3ay - 7-yo - 2aP3)b 2  (3.10)

+ (-7ro + 37x + 3az + J3k + 2acb 2)b3 )

where again we have neglected the products of relative position and attitude components.

Then 'M is expressed:

=m -b, x ( 1 .11b, x bB) - -b, x (11,11bl x 6B)
2 2 12 ^ 12

+ 2 b2 X (42.0 2 x 'B) - ýb x (I2.1 2L2 x B)
L3 b3X(31NXI 13' B

2 - 2b I31b+ b x (Ij x B)- b3x (13./3/3 x •B)
2

which simplifies to:

__ = , x ((Ix. - 1.)b1 x IB)

2L2&2 X ((12. - 1,.j, 2 xB)

+ 2L3 X ((1s. - 13.)l, 3 X2
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Performing the cross products and linearizing with respect to the states and the controls

we find the total linearized magnetic moment acting on the tracking vehicle:

1 M (mcd (1,. J) Macd(,
r - - 13.)) &

___ I~+m3( 3 ~I.) 2 (3.11)

- + 2(1 I+ 2roI~ l) 2ro . 2.)
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3.3.3 Complete Equations of Motion Now that we possess expressions for the total

magnetic force (eq. 3.9) and moment (eq. 3.11), we can write the complete relative trans-

lational and rotational equations of motion for Design # 1. The translational equations of

motion are:

S- 2ný - 3n 2x = m71 2(12. + 12.) m+/13 (13 + 13.) (3.12)

=2ral3(Z3 + 13.)+ m7y11 (11 . + l1,) (3.13)ijq-2n = Mtr 3 M 3r

+ n molll(1, + 1,,) 2mal 2(12, + 12,) (3.14)J•"Fn~ =Mtr r3 3 ,r

The rotational equations of motion are:

+ n(-A - B + C)2 + n2(C - B)(3.15)A A

-mcl( 2(1  - 12.)- mar -3
Ar3 -A--r3 (3. -13.)

ý2+n(A+B - C),j 4n 2 (A- C) ,, 3n 2(A - C) Z (3.16)
B B Br0

S,.- ,,1+3. 1 3. )

3n + 3n 2(B - A) - 3n 2(B - A)
2r0 C Cr0  ) _ (3.17)

0 2Cro

where a, /, and -y were defined on page 3-6. We observe that these equations are highly

coupled with respect to the controls as well as the states. We also note that the bI and -02

equations for this design have purely sinusoidal forcing functions on the right hand side.

When these terms become zero in either of these equations, "control authority" has been

lost in that equation. This behavior is a first hint that Design# 1 may be inferior.

3.4 Magnetic Forces and Moments for Design # 2

Design # 2 is shown in figure 3.3. There are a total of eight conductors: two oi

the in-plane body x-axis, two on the in-plane body y-axis, two that form the out-of-plane

northern cross, and another two that form the southern cross.

3-12



bI (up)

I IIS kiC

12 12

-4 <
b2 (east) 12e 12w

"2,e

b3 (north)

Figure 3.3. Design # 2 Conductor Configuration

3.4.1 Magnetic Forces Each conductor length and current is labeled in figure 3.3.

The Lorentz equation (eq. 1.1) is used again to determine the force on each conductor:

F. = IL x B (3.18)

The individual forces on each conductor are summed to determine the overall magnetic

force on the tracking vehicle:

TO = yZ(I'L x

The summation F IL is conveniently expressed in the body frame:

fILt = 11.i1i1 + 11,l0+1 + -12.4 22 + 12.12&2 + I +.1.11, + I1 .lo1 , + 42.1,J 2 + 2

= (1•(1•. + I,.) + ( + I.))*, + (12(12. + 12.) + 11,(12. + 12.))1 2
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Using the linearized form of the rotation matrix RbI (eq. 2.4) to transform the current-

length product to the ý frame we get:

SI•L -- (/•(It.. + I•,) + l•(x + Ii.) - tk3 12(12., + 12..) - /,31c(I2,• + I 2.))ci

+ (0 3 11(Ih. + II,) + 034cJ(I1. + I1.) + 12(12. + 12.) + le,(12. + I2,))c 2

+ (--0211(h1.. + lI,) - k2 /C1(I 1., + I1.) + 01b12(12. + 12,) + b11r2(I2. + 12.))63

Performing the cross product FB = Ej(IL_ x 6B) and linearizing we calculate the total

linearized magnetic force on Design # 2:

+EB m (712(I2. + 12.,) + 71c2(1. + 21.))

S+ , 2 (3.19)

+ m (•l(Ii.. + 11,) 031,,(Ii.. + I.) 2a12(12. + 12.) 2al•,(I 2. + 12.)

3.4.2 Magnetic Moments As for Design # 1 we use the following general expression

to evaluate the magnetic moment on the tracking vehicle:

IM = jI(r x ("'L x IB))

where 'B was calculated in equation 3.10. Then 4M is expressed:

LM It- L 11__= b, x (1,.t,11b x RB) - -bi x( (Ildtlbl x B
2 - 2

2 -b2 X (12.12&2 x IB) - b2 x (1.1 2b2 X
22 2 I.22xB

+ lt&s x (I,.1jb x iB) + 3 bX (I2 ,lb 2 x 'B)
- 1143 x (I,.1j•& x 43) _ lb x (12.4,62 x 'B)
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which simplifies to:

2M = _ x ((I,. - I,,)b, x 'B)
2

+ &2 x ((12. - I2.)• 2 x 'B)
2

+ 44l,1 3 x ((I,. - I,.)!, x 'B)
4- ltlJ,3 X ((12. - I2.)b2 X 'B_)

Performing the cross products and linearizing with respect to the states and the controls

we find the total linearized magnetic moment acting on the tracking vehicle:

&M = ( r 2l m 1 e

_= ( 12.- ( - 12._)-m lSl 1  (it - .))

[M,,l ,2 1 -myltl,,(°
+ (r-3 -0( - i,) r l (12. - 12.)) (3.20)

+ (-ro (h - I) + 2 (12. - 12.))

3.4.3 Complete Equations of Motion Now that we possess expressions for the total

magnetic force (eq. 3.9) and moment (eq. 3.11), we can write the complete relative trans-

lational and rotational equations of motion for Design # 2. The translational equations of

motion are:

i - 2ni - 3nx 2Z m712(42 + I.,) mlY2,.(I 2. + 12.) (3.21)At r03 Mt ro

+2ni m710 1(i. + Id,) m,,.(IV,. + I,.) (3.22)
Mra + Mtro

2 _Moll(1 1. + =II) _ nf3li( 1l• r+ It.) (3.23)

2mal2(12. + 12.) 2mal,.(I2. + 12.)

Mtr3 Mtr3

The rotational equations of motion are:

ý, + n(-A - B + C) .2 + n 2(C - B) 0= (3.24)
A A
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mt;l( (12 - 12.Aro 2 Aro

, n + n(A + B - C) • 4n 2(A - C) 3n,2,(A - C)z (3.25)
B B Bro (

B2( 2. - I2,)

1/)- ~+ _A~, 2Br~' 3 Br~ 3 12.)C2(

3n + 3n 2(B - 3n 2 (B - A)
-ro C Cro y- (3.26)

M-yl2L I M-l• "I
_I, + 2( -12. 2)

0 2Cr0

where o, 83, and - were defined on page 3-6. We note the presence of -y terms in the 01

and 4'2 equations. Unlike Design# 1, control authority in low inclination orbits does not

appear to be lost in these equations due to the constant term contained in the definition

of 7.
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IV. Tracking and Control Issues

This chapter explores the issue of controller design for the tracking vehicle. The

controller is designed to allow the tracking vehicle to stay a fixed distance away from and

maintain a constant attitude with respect to a target vehicle. Design # 2 is shown to be

more controllable at certain points in low-inclination orbits than Design #1. A MATLAB

(16) program (CONTROLLER.M - see appendix F) is written for controller design and

evaluation. Also a new control theory concept we call steady-state controllability is defined

and explored.

4.1 State Space Representation of Equations of Motion

We use a state space representation to model the POTV's electrodynamic interaction

with the geomagnetic field. The state space model lends itself to the understanding of

system behavior and controller design. Our linearized system is time-varying. The state

space model takes the form (3:363):

a_ = Fx + G(t)u

y = Hx

where the state vector x' consists of the relative positions, attitude angles, and their rates.

The number of states in a system is the system order N. Our system is twelfth-order.

The output vector y consists of the system variables we are interested in controlling, namely,

the relative position and attitude states. The dimension of y is 6 x 1.

X= [ p z '01 0 2  3T
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The control vector u consists of the conductor currents. The dimension of uI for Design #

1 is 6 x 1. The dimension of j2 for Design # 2 is 8 x 1.

1- = [ h. I1, 11. 12. 1s.. 1..

U-2 [ [1. h, 'I 12. h . h, 12. 12.

F is the 12 x 12 system matrix. This matrix is the same for both designs. The solution

x(t) of i = Fx represents the unforced behavior of the system. G(t) is the time-varying

input matrix. It shows how the controls enter the system to affect the states. For Design

# 1, G is 12 x 6. For Design # 2, G is 12 x 8. H is the 6 x 12 output matrix. H selects

the states we wish to control.

The six second order differential equations of motion for each design (eqs. 3.12-3.17

and eqs. 3.21-3.26) must be rewritten as a system of twelve first order equations in order to

use the state space model. This process is described by Waltman (23:2,88). The resulting

state space matrices are:

the system matrix F:

0 1 0 0 0 0 0 0 0 0 0 0

3n2 0 0 2n 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 -2n 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 -n 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 ,i(C-1) 0 0 n(-A-B+C) 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 o o 3 -)0o 0 _,n(A+B-C) 4n2 (A-C) 0 0 0Bre B B

0 0 0 0 0 0 0 0 0 0 0 1
0 3n W(B-A) 0 0 0 0 0 0 0 3n2(B-A) o

2re Cro C

(4.1)
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the input matrix G,(t) for Design # 1:

0 0 0 0 0 0

0 0 -12 -v.•7 2  -0_13 -13
Mtr3 Mtr3 MtrS M~r3

0 0 0 0 0 0
M'frI Mjr 0  0 2mol. 2inals

Mtr MtS 0 if, M~r
0 0 0 0 0 0

raI mI 2reail 2a1

M~ro• M, ro (4.2)
0 0 0 0 0 0

0 0 Aro• Ar0  Ar0  Ar0

0 o 0 0 0 0

0 02Br 2Br0 0 2Br(

0 0 0 0 0 0

mu1  
- •l m7-• _ u o o

32r 2Cr0
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the input matrix G2(t) for Design # 2:

0 0 0 0 0 0 0 0
o 0 -712  !0 0 _1 __ _

S Mr Mr' Mtr30

0 0 0 0 0 0 0 0

-7, M4 0 0 m-YI lYI 0, o o o 0 0 0 0o

M~ 0  Mr MrM,r• M,r T1 •-Mr (30 0 0 0 0 0 0 0

Mjr,° (4.3)
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
m o ml 2 o o o

0E 0

0 0 0 0 0 0 0 0
M-12  m70 mY12 -o o o o

i 2Cr0  2Cr: 2Cr 0

and the output matrix H:

100000000000

00 1000000000

o00010000000
0 0 (4.4)

0 0 0 0 0 0 0 0 1 0 0 0

L0 0 0 0 0 0 0 0 0 0 1 0

Note that the rank of the input matrices G12x'(t), G 2 x$(t) can never be greater than five.

Six of the rows are comprised of zeros. Rows two, four, and six are linearly dependent:

-2a(Row 2 ) + -(Row 4 ) + Row6 = 0

These rows are comprised of the control terms in the relative translational equations of

motion. This relationship among rows two, four, and six holds for any orbital inclination.
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4.1.1 Eigenvalues and Stability The eigenvalues of the F matrix are the system

poles. They characterize the natural, unforced behavior of the system. A pole with an

imaginary component produces oscillatory behavior. A pole with a positive real part

causes system instability. We define instability to mean that if system is displaced from an

equilibrium state (defined in next section), the system will not return to that equilibrium

state and remain. Mathematica (12) is used to determine the eigenvalues (Aj) of F (twelve

total):

-\ = 0, 0,

"jn, +jn

Sn[ 3(A - B)1 i,

-n[3A2 - 2AB - 2AC + BC - C 2

[ [9A 4 
- 12A 3B - 12A 2B 2 _ 12A 3 C + 30A 2BC + 12AB 2C

_ 2A2 C 2 - 16ABC2 + B 2C 2 + 4AC3 - 2BC3 + C 4]½/2AB]½

We note here that absence or presence of three particular entries of the F system

matrix has no effect upon the eigenvalues of F. These terms are -3n 2z/ro, -3n-+/2ro and

-3n 2 y/ro. These are the so-called "extra"terms whose origin and effect upon the equations

of motion were discussed in section 2.2.2.1.

The repeated poles at zero are the source of the constant and linear terms in the

solution to the coupled x and y translational equations of motion. They make the system

unstable in x and y. The four purely imaginary poles lead to oscillatory behavior. One

pair is associated with the coupled x and y equations and the other pair is associated

with the z equation. The poles ±n[3(A - B)/CI' cause tP3 oscillatory behavior if B > A.

Otherwise the tb3 equation is exponentially unstable. The last four complicated-looking

poles are associated with the coupled 01, tb, equations. They cause oscillatory behavior

when C > B > A. Otherwise these poles seem to cause instability. The POTV should

always be designed to have C > B > A for passive attitude stability. There may exist

combinations of A, B, C where the condition C > B > A does not hold where the resulting

poles are stable. This possibility was not investigated.
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4.1.2 Equilibrium Points System equilibrium points are values of the state vector I

which make _i = Fx = 0. The solutions Xq of Fx = 0 lie in the nullspace of the matrix F.

One equilibrium point is the trivial solution x_ = 0. We note that the nullspace of F can

not solely consist of the zero vector since rows one and four of F are linearly dependent.

Thus the rank of the 12 X 12 matrix F is eleven. The Mathematica "NullSpace" command

is used to calculate the resulting equilibrium point:

xeq =c 10 0 ro 0 0 0 0 0 0 1 0 0 1

where c is any constant. We expect this equilibrium point to exist because in chapter two

we saw that a tracking vehicle ahead or behind the target vehicle in the same orbit would

stay at that relative position without any expenditure of control effort. The pitch angle

,03 is equal to y/ro at this equilibrium point.

4.1.3 Controllability Thus far we have explored the unforced behavior of the sys-

tem. The unforced system has been shown to be unstable. Control effort must be expended

to maintain the system in a non-equilibrium state. This section addresses the issue of con-

trollability. We find that Design # 1 is actually uncontrollable at certain times in an

equatorial orbit. Design # 2 is found to be fully controllable at all times in an equatorial

orbit.

A system is said to be completely controllable if in a finite time span (t - to), any

desired system state x(t) can be reached through some control history m(t) (3:384-385).

The assessment of the controllability of a linear time-invaxiant system is a simple process.

Unfortunately our system is linear and time-varying. We will make a simplification to the

system that will allow us to make a time-invariant controllability analysis of both designs

in an equatorial orbit.

How is the controllability of a linear time-invariant system determined? Begin by

forming the controllability matrix M,:

M, = [GIFGI" ...IF"-'
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If the rank of M, is equal to the system order N, then the system is completely controllable.

Incidentally, the observability matrix M. can be formed in an analogous fashion but we do

not concern ourselves with this because the combination of the system matrix F and the

chosen output matrix H always assure complete observability.

Mathematica can be used to evaluate the rank of M, when F and G are constant

matrices. Our F is a constant matrix. The non-constant input matrices G, and G2 for the

two designs contain the time-varying expressions a, /P, and y. The definitions of a, /3, -Y

are repeated here for convenience:

a = cos 6 cos u cos (f9 - 0, - A) - cos i cos b sin u sin (f - O, - A) + sin i sin 6 sin u

/ = - cos 6 sin u cos (fl - O, - A) - cos i cos 6 cos u sin (Sl- 0# - A) + sin i sin 6 cos u

7 = sin i cos 6 sin (fR - e, - A) + cosisin6

where the time dependence of these expressions comes from the quantities 0 g and u (see

eqs. 3.4 and 2.1):

di = 0go + W's(t - to)

u = uo+n(t-to)

We note that the quantities a, / are composed of trigonometric functions with frequencies

n and we. The orbital frequency n is approximately fifteen times larger than the earth's

rotational frequency w$ for a 400 km orbit.

We use the "gain-scheduling" concept proposed by Ridgely (17) to perform a "time-

invariant" analysis of the controllability of our system. This method "freezes" a time-

varying system at an instant in time, then a time-invariant controllability analysis is per-

formed for that time instant. If the system is completely controllable at all time instants,

then the time-varying system is completely controllable. The method becomes tractable

when the time-varying system is periodic. Then the values of all entries in the input matrix

G are known at any future time t. Fortunately our system is periodic for any inclination

angle. This can be seen from the periodic plots of the magnetic field in the orbital frame

4-7



(appendix A). The gain-scheduling method is used in this section as well as in section 4.2

where it is used to discuss the design of a time-varying controller.

The periodicity of the magnetic field in orbital frame coordinates is conceptually

simplest when the tracking vehicle is traveling in an equatorial orbit. Then the in-plane

c4 and 62 components of the B field are single-frequency sinusoids and the out-of-plane

c3 component is constant (see appendix A). The orbital inclination angle i is zero and

the right ascension of the ascending node Q2 is undefined for an equatorial orbit. For our

purposes, we pick Q to be zero. After the application of the trigonometric identity (eq.

3.6), the expressions a, fl, -y for the equatorial orbit become:

ao = cos b cos (u - 0, - A)

0o = - cos b sin (u - O -A)

70 = sin6

Inserting these expressions for a, P, -y, the input matrices G(t) become:

Design # I GI(t):

0 0 0 0 0 0
0 0 _171_,286 mt*6 M_ Cd/_ ______,

Mt3 Mt,3 Mtr,* M~r3

0 0 0 0 0 0

Me: 0 0 c 2mlzncc

0 0 0 0 0 0

mle m c~at 2m1 cic* 2m1%c- * 0 0M tr : M I T - -( 4 .5 )

0 0 0 0 0 0

0 0 M_2C6CG M12 C#e d Ml 2 CO

o o 0 0 0 0

0 0 0 0 0 0m12 CSS m1
2
.6 cis* E 0m 12

2
a6M2C

0 0C0* 0 0
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Design # 2 G2(t):

0 0 0 0 0 0 0 0
0 0 -12J6 MIS6 0 0 m4,26 M_" S6

Mr3 Mir3 Mtr3 Mir,

0 0 0 0 0 0 0 0

ml11:6 mt, 86 T IU, 86 MI. 86 o3• 0 0 3 :: o ,6
Mir: M,Fo Mir 0 0 0

0 0 0 0 0 0 0 0

mlic6a6 mlic-s - 2mI2c6cO 2m12c6c. mta c680 mt. cis* 2ml. c6c# 2ml, c6e9"M,r Mir M,3 M,r: i M,

0 0 0 0 0 0 0 0
o o - '- oo
0 0 0 0 0 0 0 0:::. A~a rni2 Trý r! A

0lc. 01cs 01ha 0m,0 0*6

~2B';r. ::2B'tO Br. Br!3

0 0 0 0 0 0 0 0

M12
uI M12jj m12 86 M128i oo-2~r. -2c-r- 0 0 0 02(Cr Cr• -- 2Cr•

(4.6)

where the abbreviations c = cos, s = sin, and =_ (u -9, - A) have been used for brevity.

The controllability of these conductor-only designs in non-equatorial orbits is not

mathematically investigated in this thesis. However, we expect that the designs have

controllability characteristics similar to those possessed in equatorial orbits for orbital

inclinations other than 11.5" which are less than 78.5". In appendix A we find that at

certain times (once per sidereal day) the in-plane component (B41 = B1i 1 + B2e 2) of B

approaches zero as the orbital inclination approaches 11.5". At i = 11.5", B41 disappears

entirely once per sidereal day . Thus in an 11.5" inclination orbit all the control terms

involving a and P3 in the equations of motion will disappear once per sidereal day. 11.5" is

the approximate angle between the magnetic poles and the corresponding geographic poles.

Also in appendix A we find that the out-of-plane component (B L) of B is zero once per

sidereal day at orbital inclinations greater than 78.5". Thus all control terms involving -y

in the eqaations of motion will disappear once per sidereal day at inclinations greater than

78.5". Later we find that some of the restrictions mentioned in this paragraph disappear

when a pair of electromagnetic thrusters is added.
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Because both of these designs are periodic in nature, we do not have to assess the

equatorial-orbit controllability of the designs at every time instant in order to prove con-

trollability for all time. Instead we evaluate the rank of the controllability matrix M, for

both designs for the cases:

* 0 = (u - Os - A) = 2k(90*), k = 0, 1, 2,... =: sin 0 terms in G(t) go to zero

* 0 = (u- g - A) = (2k + 1)(90g),k = 0, 1,2,... #. cos0 terms in G(t) go to zero

* 0 = (u - 0, - A) = all other values =• cos 0, sin 0 terms in G(t) are non-zero

Evaluating the equatorial-orbit controllability for these three cases is equivalent to investi-

gating the controllability for all time instants. We want a design which proves to be totally

controllable for all values of (u - 0O - A). We use the CONTROLLER.M program to eval-

uate controllability by determining the rank of the controllability matrix M,. Design # 1

becomes uncontrollable when (u-- As -,\) is an odd multiple of 900. Design # 2 is completely

controllable for all values of (u - 0, - A). This is an important result. We foresaw a result

like this in chapter three when we noted that the ¢ 1, 0 2 equations for Design # 1 (eqs. 3.15

and 3.16) did not include any "constant" control terms. Therefore all further discussion

will be limited to Design # 2. Although we have only proved Design # 2 controllability

for an equatorial orbit, we expect this result applies to other low-inclination orbits as well.

Surprisingly, Design # 2 turns out to be completely controllable at all points in an

equatorial orbit even when some conductors are removed (columns of G eliminated). We

believe that any three conductors can be removed while maintaining complete control-

lability. This conclusion arises from much experimentation with the CONTROLLER.M

program. This redundancy can increase reliability and free conductor towers for other uses.

There axe practical constraints on which conductors could be removed. For instance, use

of out-of-plane cross conductors for gross translation is not recommended due to structural

design limitations.

4.2 Controller Design and Performance

In this section we use ,he gain-scheduling concept to design a control system that

applies to a particular instant in time. A series of such time-specific controllers designed
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Figure 4.1. Closed-Loop System Block Diagram

over the time span of one siderial day could be combined to form a full-blown time-varying

control system.

The control system should allow the tracking vehicle to stay a fixed distance away

from and maintain a constant attitude with respect to the target vehicle.

This goal is stated in control terminology as: the tracking vehicle must track a

constant reference command. We use the words "tracking" and "command-following"

interchangeably. The reference command consists of the variables we want to track: 3

relative positions and three relative attitude angles:

r_= • es, Ze, Old.. ib2d.. 31..

The reference command vector r defined here should not be confused with the POTV

inertial position vector r defined in chapter two. The controller should ensure system

stability and be robust with respect to modeling error and noise. Figure 4.1 shows the
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block diagram of the closed-loop control system proposed to accomplish these goals. Note

that all states are assumed to available for feedback. If this were not the case, a Kalman

filter (11:224) could be used to obtain an estimate of the state. The feedback controller

K is chosen to provide robust closed-loop stability. The pre-filter M is designed for good

reference command tracking. The dimensions of all vectors and matrices in figure 4.1 are

as follows:

_r6xI _= reference command vector

_USXl = control vector

X_12xI = system state vector

y _xI = output vector

F 12x1 2 = system matrix

G 1211 -input matrix

H`x12  output matrix

MSX - pre-filter matrix

Kx 12  controller gain matrix

There are many methods of feedback controller design. We choose the Linear Quadratic

Regulator (LQR) method because this method guarantees closed-loop stability and pro-

vides good stability margins (11:223,227-229). The LQR controller is the controller K

that minimizes the performance index:

J = (TQ + uTRu)dt

subject to the constraint:

= .-= + Gu

where Q is the state-weighting matrix and R is the control-weighting matrix. These ma-

trices are of the form pU, where U is the identity matrix. p. is the weighting on the Q

matrix. pu is the weighting on the R matrix. These weightings are chosen by the designer.
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Usually one of the weightings is fixed at unity while the other is varied. Then the resulting

output response and corresponding control behavior are studied. The methodology behind

the derivation of the controller K that minimizes the performance index J is described by

Maciejowski (11:222-227) and will not be gone into here. The resulting K is a constant

gain matrix. In practice, the MATLAB command "LQR(F,G,Q,R)" is used to derive the

gain matrix K.

After the controller K is designed, we derive the pre-filter M. M should be designed

with optimal command-following in mind. We assume that M, like K, is a constant gain

matrix. After studying the interconnections of the system blocks in figure 4.1 we write:

i = Fx+Gu

= Fx+ G(Mr -Kx)

= (F - GK)z GMr

_ should be zero in the steady-state as a consequence of good tracking of the constant

reference command. Then the state equations become:

E = 0 = (F-GK),5 +GMr

_,,= Hr,

These equations combine to yield:

4. = -H(F - GK)-GMr (4.7)

But since the output y,0 should track the reference command r, the pre-filter M must be

chosen to satisfy:

- H(F - GK)-1 GM = U (4.8)
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where U is the identity matrix. We note that M is non-square. Solving this equation for

M we arrive at:

M = -(H(F- GK)-'G)t  (4.9)

where the t symbol denotes the pseudo-inverse operation.

4.2.1 Stability Robustness Uncertainty in the plant model can lead to closed-loop

system instability. The quality of a system that makes it stable in the face of uncertainty

is called stability robustness. There is a major source of uncertainty in the POTV plant

model. This is the magnetic field magnitude error inherent in the use of the simple dipole

model of the geomagnetic field. This error may be up to 30% at the earth's surface

and decreases as orbital altitude increases. In control terminology this error is termed

a "multiplicative perturbation at the plant input". Fortunately the LQR design method

guarantees a gain margin of 6 dB when the weighting matrices used are of the form pU

(11:229). This is more than enough margin to guarantee POTV closed loop stability in the

face of magnetic field modeling error. This margin also helps overcome model linearization

error.
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4.2.2 Steady-State Controllability The most surprising result from experimentation

with the CONTROLLER.M program is that even though the system is completely con-

trollable, it does not appear to be steady-state controllable (a term coined for this thesis by

Dr. B. Liebst). In other words, the POTV can reach any position state but can't remain

at that state unless it happens to be an equilibrium state. No controller can be designed

that acceptably tracks a reference command consisting of three relative positions and three

attitude angles for a POTV using only electrical conductors for thrust. All attitude angles

are tracked but no position components are tracked accurately. The designed controller for

the conductor-only POTV works acceptably only when the CONTROLLER.M program

is modified to include only two of the position components plus the three attitude angles

in the reference command vector. The position component that was not included in the

reference command then behaves in an unpredictable -manner. The problem arises from

the rank deficiency of the G input matrix as shown below. Remember we have shown

already that its rank can never exceed five because rows two, four, and six are linearly

dependent. The rank deficiency arises from the "translational part" of the input matrix.

To understand more about why G should have rank six for steady-state controllability, we

return to equations 4.7 and 4.8:

31 = -H(F - GK)-'GMr

-H(F - GK)-'GM = U

Recall that the second equation is the necessary condition for the steady-state output Y,

to track the six-component reference command r. The 6 x 6 identity matrix U obviously

has rank six. According to Strang (20:201), the rank of the expression -H(F-GK)-IGM

must be less tb-- or equal to the smallest matrix rank found in the expression. We have

already shown tLtat the rank of G i always less than or equal to five. Thus the expression

-H(F - GK)-IGM can :-ever have rank six and thus can never equal the identity matrix.

The steady-state output y,, can only track five of the components of the six-component

reference command r.
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The seeming solution to the steady-state position controllability problem is to some-

how increase the rank of G to six. We introduced conductors to the design at many

different locations and orientations in an attempt to accomplish this desirable result. The

new conductors added columns to the G matrix but unfortunately G still lost rank in the

old, familiar fashion:
- (Row 2) + -(Row 4 ) + Row6 = 0

We also deleted conductors to make the design unsymmetrical with similar lack of success.

Steady-state controllability can also be interpreted as the ability of the control system

to exert thrust in any direction at any time. Clearly this is not the case with the POTV.

The cross-product nature of the electrodynamic force tells us that a force can not be

exerted in the direction of the instantaneous B vector:

B = IL x B (4.10)

We thus make the important conclusion that no conductor-only design configuration leads

to steady-state position controllability. Thus while the system is completely controllable

using only electrodynamic forces (any state can be reached in a finite amount of time), it

cannot maintain any state continuously other than equilibrium states.

One method of improving the rank of the G matrix is to introduce force-producing

devices which do not rely upon the electrodynamic effect. We introduce a pair of electro-

magnetic thrusters to produce out-of-plane thrust. They axe attached to the centers of the

out-of-plane crosses and produce thrust in the "north" or "south" out-of-plane directions.

Only one thruster operates at a time. The modified control vector u is:

= I I,4. I,. I- . I . I . I . T-]6
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for a total of nine controls. Positive T means that the southern cross thruster is firing and

negative T means the northern cross thruster is firing. The modified 12 x 9 G(t) matrix is:

0 0 0 0 0 0 0 0 0

01 0 _1_00 M• o

0 0 0 0 0 0 0 0 0
Mo o 1

0 0 0 0 0 0 0 0 0

Mr0  0  0  40  m40  o 0 0

0 0 0 0 0 0 0 0 0

,r Mt3l, ot~ Mi 0 o W;
0 0 0 0 0 0 0 0 0

0 -l 0 u :f 0 o o oYc o0 0 0 0 0 0 0 0 0
tnvy 2  m71 2  myllj I a-l

2Cr0  2C0  2C 0 0  0 0 0

(4.11)

which has a rank of six. The addition of electromagnetic thrusters makes the POTV

completely steady-state controllable. In addition to this desirable result, the addition of the

thrusters has another benefit: from experimentation with the CONTROLLER.M program

we expect that the POTV becomes completely controllable at all points in an 11.5° orbit

(the conductor-only design was already completely controllable for other low-inclination

orbits). This was not the case for a conductor-only design. Unfortunately, we do not

believe that the thrusters make the POTV completely controllable at all points in orbits

with inclinations of greater than 78.5* (as was also the case with the conductor-only design).

The Design #1 configuration may be a more appropriate design for high-inclination orbits.

This possibility is not investigated.
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V. Steady-State Tracking and Docking Performance

In the previous chapter we discussed the design of a controller that enables the POTV

to track a target vehicle. In this chapter we discuss POTV conductor sizing, steady-state

tracking performance, and docking performance. General features of tracking/docking per-

formance are related to controller design parameters. One steady-state tracking example

and two docking examples are shown and results described.

5.1 Vertical In-Plane Conductor Sizing for Orbit Transfer

In this section we size the vertical (z) in-plane conductors for an orbital transfer

requirement. The horizontal (y) in-plane conductors are discussed in the docking section

of this chapter. The out-of-plane cross conductors and their non-conducting support towers

are not explicitly sized. We assume that the cross conductors are much smaller than the

in-plane conductors because we expect they will be used primarily for attitude control.

A practical method to move a low thrust vehicle like the POTV from a low prograde

orbit to a higher altitude prograde orbit is to exert a small constant thrust along the

orbital velocity vector (eastward). Thrust in the westward direction would cause the orbit

to degrade. The trajectory resulting from a small constant eastward thrust is a gentle spiral

outward from the lower orbit to the higher orbit assuming the lower orbit was circular.

Wiesel (24:89-90) derives the time-of-flight equation for this method of orbital transfer:

F (5.1)

where F is the applied thrust, Mt is the total system mass, r, is the lower orbital radius,

and r. is the upper orbital radius. We use this equation to determine the thrust required

to move the POTV from one circular orbit to another for a given transfer time and vehicle

mass.

The ASSET version of the POTV spacecraft is required to move aluminum salvaged

from space shuttle external fuel tanks from an orbital altitude of approximately 300 km

to an altitude of 460 km. Here we assume that the space shuttle can deliver its external
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tank to 300 km (4). The proposed maximum altitude of the space station Freedom is

460 km (13). The space station travels in an almost circular orbit (e =_ 0.009). We

assume for ease of derivation that the POTV is traveling in circular orbit when it finishes

scavenging a shuttle external tank for aluminum. Now we can determine the amount of

thrust required to move a 50,000 kg POTV from 300 km to 460 km in thirty days. We

have chosen 50,000 kg as the maximum allowed value of the total system mass. This figure

includes a fixed 31,300 kg central mass and the total mass of the conductor towers, which

has not been determined yet. Evaluating equation 5.1 we find the required force (thrust)

is approximately 1.75 newtons. Now we will "size" the two vertical in-plane conductors

(one "up" and one "down") required to produce this thrust assuming a certain current

level can be sustained. Penzo and Ammann (15:129) discuss a proposed electrodynamic

tether system capable of handling 125 amps of current. We take this to be a reasonable

sustainable current limit. Then the familiar Lorentz equation (eq. 1.1) is used to make an

engineering estimate of the total conductor length required:

FB =ILxB

We assume that the needed force (1.75 newtons) is produced by the interaction of the

two vertical in-plane conductors with the out-of-plane component of the geomagnetic field

(B±). At the space station inclination of 28.50 (13), B1 consists of a large constant

component and a smaller sinusoidal component (see appendix A for a plot of B± (B 3) at

i = 28.51). Over the altitude range of 300-460 kin, B 1 varies from a low of approximately

1.94. 10-5 tesla to a high of 2.60.10-5 tesla. For calculation purposes we take B1. to be

approximately a constant 2.26 - 10-5 tesla over the orbital transfer. Solving the Lorentz

equation for L, we find that the two vertical in-plane conductors must have a combined

length of approximately 6*0 meters for the mission parameters we have outlined.

We would like to minimize the amount of thrust needed for planar orbital radial

change because this minimizes the product of current and conductor length. Since power

is proportional to current squared, current is a variable worth minimizing. There are

several ways to accomplish this:
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"* Minimize the amount of radial distance to be traversed.

"* Increase the amount of time allowed for the maneuver.

"* Decrease the system mass by minimizing the central mass and by minimizing the

linear mass density of the conductor towers.

We can also minimize the amount of current needed for a given thrust level by making the

conductors as long as possible. Unfortunately this conflicts with the goal of minimizing

total system mass.

What size power plant would be needed for the particular orbital transfer example

(ASSET POTV) we have described? We use the approximate induced voltage equation

(eq. C.1) for low-inclination orbits, and the power equation (eq. C.2) derived in appendix

C to derive to the necessary power supply power:

Vind G S- wor)B(L)

- 101 volts

where we have used r = 300 km to be conservative in our calculation of Vi.d because the

induced voltage is greatest at the lower orbital radius. Then we derive the needed power:

IP,a = IVind + 12t~

where:

Rtot = Re + A., + Ro.-d

If we assume that all power is being used for thrust, R°..d is zero. From chapter one we

know Ri,, varies from approximately one ohm to twenty ohms. The conductor resistance

R, is equal to the conductor resistance per unit length multiplied by the total conductor

length. The 125 amp example electrodynamic tether discussed by Penzo and Ammann

has a resistance per length of approximately 7.7- 10-5 ohms per meter (15:129). Using

this value, the conductor resistance is 0.05 ohms. So most of the resistance arises in the

ionospheric current path. The total power P,. for this example for a current of 125 amps
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and the worst case ionospheric resistance of twenty ohms is calculated to be about 325,000

watts, with most of the power being dissipated in the ionosphere resistance. If we use the

best case one ohm value for the ionospheric resistance, the total power is approximately

44,000 watts. These figures have a great deal of built-in uncertainty because the resistance

of the ionosphere is not well understood. To minimize power requirements a practical

vehicle must be designed to minimize all sources of resistance. More importantly, conductor

lengths should be maximized to reduce the amount of current needed for a given thrust

level since power is proportional to the current squared. A possible option to maximize

conductor length would be to deploy retractable, low-mass, flexible tethers at the end of

the rigid conductors. These flexible tethers would be suitable for the orbital transfer task

since precision position control is not required.

Would the magnetic field generated by a 125 amp current in the vertical in-plane

conductors interfere with the currents flowing through other conductors? If we assume

a minimum distance between conductors, we can answer this question. Let's assume a

minimum separation distance of 5 meters. Then equation 1.2 is used to estimate the

magnetic field generated by a 125 amp current at a 5 meter radial distance. The answer is

5- 10- tesla. This is approximately one-fourth of the geomagnetic strength at the altitudes

at which we expect to use the ASSET POTV. A robust control system should be able to

handle this "disturbance".

5.2 Steady-State Tracking Performance

The controller design program CONTROLLER.M is a MATLAB program written

for this study which lets the user enter various parameters which describe the POTV

system, enter the initial standoff position and relative attitude (initial state), enter the

desired standoff position and relative attitude (reference command), enter the LQR design

weightings p. and p#, and evaluate the resulting transient and steady-state response of

the outputs and controls. See appendices E and F for three sample runs, corresponding

plots, and a complete program listing. All conclusions reached about steady-state and

non-steady-state tracking performance in this and following sections are the result of ex-

perimentation with this program. The input matrix G(t) in the program includes the pair
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of electromagnetic plasma thrusters added at the end of chapter four as well as the Design

# 2 conductor configuration. We evaluate the tracking performance of the controller for

two general cases:

"* Steady-State Tracking: r = _(t0 ) The reference command is equal to the initial state

of the system. The POTV is being directed to stay at its initial position and attitude

relative to the target vehicle.

"* Non-Steady-State Tracking: r 0 _(t0 ) The reference command is not equal to the

initial state of the system. The system is being commanded to a new relative position

and/or relative attitude. This is the case when the POTV is commanded to dock

with a target vehicle. We show two docking examples.

In this section we discuss the steady-state tracking case. The docking cases are discussed

in the next section.

A steady-state tracking example is the first of three examples shown in appendix

E. A sample run at the beginning of the appendix shows the data the user enters to

describe the POTV configuration, design weightings, and tracking requirements. Plots

are made of: position states, attitude states, forces, moments, and conductor currents.

For the first example we choose an 12 length of 310 meters to provide the required large

steady-state force in the x direction. This is also the length derived in the previous section

for the orbital transfer requirement. We have assumed here without proof that the POTV

can rotate 90 degrees about its z axis when it transitions from orbital transfer mode to

steady-state tracking mode. From section 2.2.1.2 we know that no steady-state force will

be required in the p direction. Thus, 11 can be chosen to be "short". We assume here

that most of the generated forces are the result of current interactions with the large out-

of-plane component of B_ present in low-inclination orbits. We choose an 11 length of 50

meters because this is a convenient length if the vertical in-plane towers are also used for

docking purposes. The non-conducting out-of-plane towers are chosen to be 50 meters long

and all the conductor lengths in the out-of-plane crosses are chosen to be 20 meters long.

The out-of-plane crosses are designed with attitude control in mind. We do not want large

currents to be generated in the crosses because the resulting large forces might cause the
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non-conducting support towers to fail structurally. All of the conductor length information

presented here and other information about the specific vehicle used in the examples is

tabulated in appendix D. The same vehicle configuration is used for all three examples.

The LQR controller design methodology we have used appears to be well-suited to

the steady-state tracking example. The plots in appendix section E.1 backup the following

observations: No transient position output behavior is observed. The position outputs

are always constant and equal to their initial values _(to) regaxdless of state and control

weighting. The attitude outputs each exhibit a decaying oscillatory sort of behavior which

settles down to a constant steady-state value. The observed sign and magnitude of the

steady-state forces and moments are the same as those predicted in sections 2.2.1.2 and

2.2.2.2. If we increase the state-weighting po,, the amplitude of oscillation of the attitude

outputs decreases and settling times decrease. We believe that the extremely small non-

constant force observed in the y direction arises from moment required for attitude control.

We think that other small non-constant forces required for attitude control do not appear

on the plots of forces in the x and z directions because the constant forces needed for steady-

state position standoff are many orders of magnitude greater than the non-constant forces

required for attitude control.

5.3 General Non-Steady-State Tracking Performance

The findings in this section apply to both of the docking examples that follow. Unlike

steady-state tracking, transient output behavior is observed for position as well as attitude

outputs. All outputs exhibit the "decaying oscillation to a constant steady-state value"

type behavior. As in steady-state tracking, the amplitude of oscillation and the settling

time decrease as the state-weighting p. is increased. Unfortunately as p. is increased,

the transient initial control requirement increases. We also observe that as the difference

between the initial state vector and the reference command vector increases, the transient

initial control requirement increases. Also for a fixed state-weighting, as the difference

increases, the amplitude of the initial oscillation of the outputs increases.

Heavy state-weighting is wanted for desirable transient response behavior. Light

state-weighting is desired to minimize the transient initial control effort required. This is
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a good example of the conflicting requirements commonly found ini engineering problems.

One solution is to make the state-weighting p,, large enough to satisfy the speed of response

requirements of a particular problem. Then the initial reference command is made equal

to the initial state. Then the referenice command is moved away from the initial state

toward the desired final state by small enough increments such that the initial control

requirement is brought below an acceptable level. We refer to this process as "stepping"

the reference command. Another possible solution to this problem which is applicable to

R-BAR docking is presented in the R-BAR docking subsection.

5.4 Docking Examples

In the docking examples in this section we assume that the POTV has been moved

close enough to the target vehicle for the linearized relative positional and rotational equa-

tions of motion to be valid. Examples are shown in appendix E for two different in-plane

docking approaches. The vehicle lengths used for the steady-state tracking example are

used here. An out-of-plane docking approach (Z-BAR) is discussed.

5.4.1 R-BAR An R-BAR approach assumes that both of the vehicles are in the

same orbital plane. The POTV approaches the target vehicle by moving along the radius

vector connecting the center of the earth and the target vehicle. Forces in the x and y

direction are exerted to move the POTV downward/upward along the radius vector and to

keep the POTV from moving east or west as it moves along the radius vector. A specific

example is shown in appendix section E.2.

R-BAR position standoff in the x direction is the most energy-expensive type of

standoff. Standoff in the z direction requires three times less control effort. Standoff in the

y direction requires no control effort. We have repeated these conclusions here from section

2.2.1.2 for convenience. Long horizontal in-plane conductors are required to produce the

necessary force in the x direction. We can in fact make an engineering approximation

to the length of the horizontal in-plane conductors (12) needed for a given vehicle mass,

maximum current, and R-BAR standoff distance (x-direction). The following derivation
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makes use of equations 1.1 and 2.17.

F.., = 3n2 Mtx8.

12(212)B.± = 3nf2 (M,:V1 + 2p(1l + 12 + It + le, + l,,))xr,

which can be solved for 12 to yield:

12= My + 2 p(lI + It + l,: + 1.,) (5.2)
212B. /3n 2x,, - 2p

We note that 12 is extremely sensitive to the denominator expression 212B1 /3n 2Xr, - 2p.

Any parameter in this expression that varies will significantly affect the sizing of 2-. We

repeat some of the example vehicle descriptive information from appendix D here for the

calculation of 12. Using Mcyj = 31300 kg, p = 7.3 kg/m, 11 = 50 m, It = 50 m, l,, = C2 = 20

m, 12 = 125 amperes, B1 • 2.6- 10-5 tesla, n2 = 1.28- 10-6 rad 2/sec 2, and x,, = 100 m:

12 - 14000 m

which is clearly an excessive length for "rigid" conductor towers. If we recalculate 12 using

an x standoff distance of 50 m, the required 12 length is approximately 1700 m. One way

the problem of long 12 conductors can be remedied is by allowing more current. This could

be done by "bundling" several conductors together in a single structural tower, splitting

the required current among several conductors.

5.4.2 V-BAR When the POTV and the target vehicle are in the same orbit, one

way the POTV can approach the target is by moving in the y direction along the orbit.

This is known as a V-BAR docking approach. Forces in the r and the y direction are

exerted to move the POTV eastward/westward in the orbit and to keep the POTV from

moving up or down in the orbital plane. A specific example of V-BAR docking is shown

in appendix section E.3.
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5.4.3 Z-BAR The Z-BAR approach starts with the POTV and target vehicle not

in the same orbital plane. The POTV approaches the target vehicle along the normal to

the target orbit. An example for this approach is not shown in this thesis because when

we ran a Z-BAR approach with CONTROLLER.M, no currents were used for position

control. The only "controls" that were used for position change were the electromagnetic

plasma thrusters. The conductor currents were very small and appeared to be used only

for attitude control.
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VI. Conclusions and Recommendations

In this final chapter we summarize the major results of the thesis work and make

recommendations for further research.

While the derivation of the linearized relative position equations of motion (Clohessy-

Wiltshire equations) has been "done", we are not aware of others performing our particular

derivation of the small-angle relative rotational equations of motion. These equations are

the rotational equivalent of the Clohessy-Wiltshire equations. From these two sets of equa-

tions we derived the steady-state forces and moments required to maintain a continuous

standoff in position and attitude. These steady-state predictions were confirmed in the

example force and moment plots contained in appendix E. Further research should be

done to determine at what point the linearization assumptions (used extensively in the

derivation of the equations of motion) start to break down.

The derivation of the geomagnetic field in spacecraft coordinates was the most im-

portant early result in the thesis research. Without this knowledge the derivation of the

full equations of motion including magnetic forces and moments would have been impossi-

ble. The behavior of the in-plane and out-of-plane / components over the orbital period

and over the period of a day was unexpected. Further research should employ a better

model of the geomagnetic field than the simple dipole model to determine if the in-plane

components of B really do "disappear" at one-day intervals in an 11.50 inclination orbit. A

similar analysis could be done for the out-of-plane component of B in the 78.50 inclination

orbit. The error arising from our use of the simple dipole model was compensated for by

the design of a robust control system. NASA software (15:168) exists that more accurately

models the geomagnetic field in geocentric coordinates. This software could be modified

to translate between geocentric coordinates and spacecraft coordinates if this has not been

done already.

The derivation of A in spacecraft coordinates enabled us to derive the full equations

of motion including the effects of magnetic force as well as gravitational force. While

aerodynamic and oblateness effects were described in appendix B, they were not considered
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in the controller design. These forces are significant in low earth orbit and are deserving

of further study. The air drag especially needs to be quantified.

After deriving the full equations of motion we used a state space model to represent

the system. This sort of representation was convenient in addressing the issues of control-

lability, steady-state controllability, and controller design. We found that all conductor

designs were not equal. Design # 1 lost control authority in equatorial orbits at points

where Design # 2 did not. Future researchers could investigate whether Design #1 is a

better design than Design #2 for high-inclination orbits. We suspect that this is the case.

We also found that some of the conductors were redundant. Further work should address

the design of a minimal conductor configuration with one or more redundant conductors

for docking purposes.

One of the most significant findings of the thesis was the seeming impossibility of

building an electrical conductor-only design that was steady-state controllable. This was

clearly a disappointing result. We had hoped to build a conductor-only design. The

addition of a pair of electromagnetic plasma thrusters allowed the POTV to track all

components of position as well as attitude.

An important accomplishment of this work was the successful design of a closed-loop

controller using the LQR method. This was not a "given" at the beginning of the research

because the open-loop state responses of the system to the control currents appeared to be

hopelessly coupled. In other words, a control action giving a desired change in one state

would produce simultaneous undesired changes in other states.

The LQR design method had one major shortcoming: no bounds could be placed

on the amount of control energy the controller could "ask for." Future researchers could

conceivably use a design methodology other that LQR that would allow the designer to

place bounds upon the allowable control energy. Also, the possibility of the design of a

reduced state controller should be investigated.

We felt that the gain-scheduling concept was an adequate way to use time-invariant

control techniques to analyze a time-varying system. Future researchers could modify the

CONTROLLER.M program to produce a controller K/pre-filter M combination for many
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"steps" (times) in the POTV orbit over the period of a siderial day. Then each component

of the gain matrix K could be plotted versus time to deduce the characteristics of the

time-varying controller. We predict that the components of the time-varying gain matrix

K(t) will consist of constants and sinusoidal terms.

An important result of this research was the finding that large tracking vehicles

require large currents for steady-state position standoff in any direction other than along

the orbital velocity vector. Perhaps this problem could be handled by "bundling" several

conductors together in a single structural tower, splitting the required current among

several conductors. This idea may not be technically feasible. The currents generated by

the PMGs associated with each conductor might interfere with each other. This idea is a

good candidate for further research.

We addressed the problem of orbital radial change in the sizing of the vertical in-

plane conductors. The most important type of orbital maneuver for the POTV after radial

change is that of inclination change. Penzo and Ammann claim that an electrodynamic

tether can be used to alter all six orbital elements (15:168-169). Their ideas should be

applicable to the POTV. The amount of current needed for maneuvers decreases with

increasing magnetic field strength. A Jupiter Inner Magnetosphere Maneuvering Vehicle

(15:66-67) has been proposed to explore the Jovian system, where the field strength is

approximately twenty times that of the earth. Another more near term application is

that of pure attitude control. WVe do not know of any research being performed in the

area of attitude control using multiple, external conductors. A POTV-like vehicle could

theoretically be used anywhere a strong magnetic field and plasma exist. We believe an

exciting application would be to use POTV technology to design a vehicle to explore the

magnetosphere of the sun. On that futuristic note we end the thesis.
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Appendix A. Plots of the Geomagnetic Field in the Orbital Reference Frame

These plots of magnetic field strength in e frame coordinates assume a circular orbit

of 400 km altitude. The orbital period at this altitude is approximately 5500 seconds.

The time duration of the plots is two siderial days (172328 mean solar seconds). Plots are

generated for orbital inclinations of 00, 5°, 11.5, 28.5%, 60%, 78.5, and 90*. The inclinations

of 0,, 11.5', 28.5', and 78.5' are especially important to the thesis development. Bl(t)

and B2(t) are the in-plane components of the magnetic field. B3(t) is the out-of-plane

component.
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4e - 05

3e - 05

2e - 05

le - 05

B (Tesla) 0

-le - 05

-2e - 05

-3e - 05

-4e - 05

-5e - 05 _
0 20000 40000 60000 80000 100000 120000 140000 160000

t (seconds)

A-5



Components of B(t) for i=78.5 deg
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Appendix B. Aerodynamic and Earth Oblateness Effects in Low Earth Orbit

In chapters two and three we quantified the gravitational and magnetic forces and

torques acting on the tracking vehicle. These are the only forces/moments included in the

POTV equations of motion. Other forces and torques include those caused by aerodynamic

drag, the oblate shape of the earth, solar radiation pressure, solar and lunar gravity, dust

impingement, etc. We believe the most significant perturtations in low earth orbit (LEO)

are aerodynamic drag and earth oblateness.

The drag due to friction with the earth's atmosphere opposes the orbital motion of

the POTV. The net effect of this force is to circularize an elliptical orbit and to decrease the

orbital radius. Wiesel (24:83), and Penzo and Ammann (15:144), model the aerodynamic

drag Fd as:
1C

Ed =-CdApv,. 1 ý22

where Cd is the drag coefficient, A is the presented area of the POTV, p is the atmospheric

density, and vr,. is the velocity of the POTW relative to the air. At the orbital altitude

range of the POTV (300-460 kin), a simple exponential model of the atmospheric density

p does not suffice. Penzo and Ammann give an empirical formula for the atmospheric

density for altitudes greater than 200 km when the particle density is greater that 1014

particles per cubic meter:

1.47. 10-1'6 T.(3000- T..)

= (1+ 2 .9 ( A200))10

where p is measured in kg/meter3 , T is the atmospheric temperature in degrees Kel An,

and Alt is the orbital altitude in kilometers.

Aerodynamic drag is the major force to be countered for simple station-keeping in

low earth orbit (LEO). No attempt is made here to determine the amount of vehicle thrust

needed to counter the drag force. The calculation of the drag coefficient for the complex

shape of the POTV is difficult. In practical tracking and docking applications the drag

coefficient for both the tracker and target should be calculated.
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The effects of the oblate shape of the earth must also be considered for a vehicle

in LEO. The earth's equatorial bulge affects an elliptical orbit in two significant ways

(24:86-87):

* Regression of the line of nodes.

e Rotation of the line of apsides (also known as the advance of the perigee).

The second of these effects does not apply to a circular orbit. We have always assumed

that the POTV is traveling in circular orbit or tracking another vehicle in a circular orbit.

The regression of the line of nodes is quantified:

3nJ 2 r, Cosi

2aW(1 - e2 )2

which for a circular orbit simplifies to:

3n2r3nJ~rg cosi
2r2

where Sý is the time rate of change of the right ascension of the ascending node, n is the

orbital angular velocity (or mean motion), J2 = 0.001082 is a number describing the oblate

shape of the earth, re is the radius of the earth, r is the POTV orbital radius, and i is the

orbital inclination. The way this effect could be included in the POTV equations of motion

would be to substitute the expression "flo + It" wherever "Q" appears in the equations.
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Appendix C. Electrodynamic Propulsion Power Requirements

What are the power requirements inherent in electrodynamic propulsion? The volt-

age induced across a conductor moving in a magnetic field is an important variable in

power calculations. The voltage induced across a straight conductor moving through a

uniform magnetic field is given by the relationship (15:119):

Vi. d = L

= (x-B)-L

where E-nd is the electrical field induced across the conductor and v is the velocity of the

conductor relative to the magnetic field. The velocity v of an earth orbiting conductor

relative to the geomagnetic field is equal to its orbital velocity minus the velocity of the

co-rotating magnetic field. For a circular, equatorial orbit, the relative velocity is written:

r

where G is the gravitational constant, Me is the mass of the earth, r is the orbital radius,

and w9 is the earth's rotational angular velocity. This expression is approximately correct

for low-inclination orbits. The first term in this equation is always greater than the second

term for low earth orbit. We note that no voltage is induced if the conductor is oriented

such that the induced electrical field E-nd = v x B is perpendicular to the length vector.

When the induced electrical field is parallel to L, the induced voltage is simply:

Vii = (- wGr)BL (C.1)

This approximate equation is used in chapter five to estimate the power requirements for

"a radial orbital change application.

Figure C.1 shows an electrical circuit model of a conductor (tether) operating as

"a thruster. The induced voltage is modeled as a voltage source with polarity opposite

to that of the power supply voltage source. We note that the current would flow in the
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Vps

Rc Rion

Figure C.I. Electrical Model of the Conductor in Thruster Mode

opposite direction of that shown if the power supply voltage was less than the induced

voltage. This is in fact the case when a tether is used for power generation. Unfortunately,

power generation is always accompanied by electrodynamic drag for a conductor in low

earth orbit. We are interested in the power required to operate a conductor as a thruster.

Regarding figure C.1 we use Kirchoff's voltage law to write:

Vp. = Vind + IR,o,

where V., is the power supply voltage, Vind is the induced voltage across the conductor,

I is the current flowing through the conductor, and Rt., is the total electrical resistance.

R,., is the sum of the resistances:

Rtot = Re + Rio, + Rioad
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where R, is the conductor resistance, Ro,ý is the ionospheric resistance, and RIoad is the

load resistance. Penzo and Ammann state that the ionospheric resistance may be on the

order of one to twenty ohms (15:125). Actual orbital tests are needed to verify this figure.

The load resistance Rgoad is derived from POTV equipment other than the conductors that

need electrical power. The conductor resistance R, is equal to the product of the conductor

length and resistance per unit length. The resistance per unit length is a function of the

conductor material and conductor cross-section.

The power supply power is:

Pps = IV•,,d + I2 Rto, (C.2)

We use this equation in chapter five to characterize the power needed for an example

application. Sources for the possibly large amount of vehicle power needed include solar

photovoltaic arrays, nuclear reactors, and earth-based lasers.
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Appendix D. Approximate Mass and Moments of Inertia for the POTV

The principal moments of inertia of a particular POTV design (ASSET) are cal-

culated in this appendix. The resulting expressions are used in the MATLAB controller

design and performance program CONTROLLER.M.

The ASSET POTV system with Design #2 conductor configuration consists of a

modified shuttle external tank with attached rigid conductor towers. We model the system

as a cylinder with attached thin rods. The rods are assumed to have constant linear mass

density p (kg/m). The total system mass is then the simple expression:

Mt = M, y + 2p(ll+ 12 + It + l1, + 1,2) (D.1)

Where we have neglected the mass of the guidewire webbing, PMGs, power generation

equipment, etc. From the ASSET study (4) we find that the mass of the central cylinder is

approximately 31,300 kg (mass of an empty shuttle external fuel tank). By no means axe

the conductor towers required to all have the same linear mass density. Indeed, one or more

conductor towers also serving as docking facilities could have larger linear mass densities

than the other towers. Also, towers serving as structural "anchors" for the guidewire

webbing could have large linear mass densities. Here we assume that all of the towers have

the same linear mass density for ease of derivation.

The approximate moment of inertia matrix for the POTV about its center of mass is

found by repeatedly applying the parallel-axis theorem to the moment of inertia matrices

of the thin rods. The parallel-axis theorem is explained by Wiesel (24:106-107). The

principal moments of inertia for a cylinder and a thin rod are found in the dynamics text

by Likins (10:522-524). Let a be the cylinder radius and h be the length of the cylinder.

After simple but extended calculation the moments of inertia of the POTV with the Design

#2 conductor configuration are:

A -MC Ia 2 + 2 + a)2 + + (+a) 2 + +) 2 + C+ 1.2(t+a)2

2 12 2 12 2 12

SM,,,(3a 2 + h 2) L+ 2 + ( 11( + h )2 +13 t, +1L3,+ "(,+ 2
B = M- 1(a + h 2) tL'+

12 (12 2 2(1 22 12
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Flat (0.28 kg/m)

I-beam (0.76 kg/m)

Side View: X I I m

Im

I-beam seen head-on

Front View:

Figure D.1. Truss Assembly for Conductor Towers

+ l2(lt + a)2))

C =M- (3 + h p L3+ 11 , + h) 2  12 .(D.2)12 ( pl12 2/( 2t 12 2 12- 12) )'+-- .. 02

End and side views of the proposed truss work for the conductor towers in shown

in figure D.1. We assume that the cross-sectional area of each tower is a constant one

meter2. Each tower section consists of four aluminum "I-beams" and twelve"ftats". This

material is readily available from a salvaged external tank (4). The linear mass density of a

single I-beam is 0.76 kg/m. If we assume that the "strip' pieces mentioned in the ASSET

report can be divided lengthwise into eight pieces, then the linear mass density of the

resulting "flats" is 0.28 kg/m. With these assumptions we calculate the calculate the total

linear mass density of the truss to be approximately 7.3 kg/m. This is the figure used in

the CONTROLLERM program listed in appendix F. A smaller total linear mass density

could be realized if the tower cross-sectional area specification (1 meter2 ) was relaxed.
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Here is the dimension data for the design used in the chapter five examples:

Mcy, = 31300 kg

p = 7.3 kg/m

11 = 310 m

12 = 50 m

It = 50 m

1, = 20 m

l12 = 20 m

The resulting total system mass and moments of inertia are:

Mt = 37870 kg

A = 1.5374e+08 kg-m 2

B = 1.0236e+07 kg m2

C = 1.5872e+ 08 kg m2

The added mass due to the conductor towers is 6570 kg.
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Appendix E. Controller Design Program Results

E.1 Steady-State Tracking Example

>> cont

Welcome to the POTV Controller Design and Performance Program.

Altitude of reference orbit (kilometers) ? 400

Trig angle (u-thetag-lambda) to work with (degrees) ? 33

Mass of ASSET excluding towers (kg) ? 31300

Linear mass density of conductor towers (kg/m) ? 7.3

Length of vertical Wx) in-plane conductors (meters) ? 50

Length of horizontal (y) in-plane conductors (meters) ? 310

Length of nonconducting cross support towers (meters) ? 50

Length of vertical (x) cross conductors (meters) ? 20

Length of horizontal (y) cross conductors (meters) ? 20

Orbital mean motion (rad/sec) =

1.1316e-03

Total system mass (kg)

37870

Principle moment of inertia A (kg-m-2) =

1.5374e+08

Principle moment of inertia B (kg-m-2) =

1.0236e+07

Principle moment of inertia C (kg-m-2) =

1.5872e+08

The (Fsys,Gsys) system is completely controllable.

The (FsysNsys) system is completely observable.
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Weighting on the state weighting matrix Q ? 1

Weighting on the control weighting matrix R ? 1

What is the value of x to attain and track (m) ? 100

What is the value of y to attain and track (m) ? 100

What is the value of z to attain and track (m) ? 100

What is the value of psil to attain and track (rad) ? 0

What is the value of psi2 to attain and track (rad) ? 0

What is the value of psi3 to attain and track (rad) ? 0

What is the initial value of x (m) ? 100

What is the initial value of y (m) ? 100

What is the initial value of z (m) ? 100

What is the initial value of psil (rad) ? 0

What is the initial value of psi2 (rad) ? 0

What is the initial value of psi3 (rad) ? 0

How long of a time response to plot ? 10000

Number of time increments (data points) ? 500
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XIO-15 Roll Angle (psi2) vs Time
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Force in Out-of-Plane (z) Direction vs Time
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E.2 R-BAR Docking Approach Example

>> cont

Welcome to the POTV Controller Design and Performance Program.

Altitude of reference orbit (kilometers) ? 400

Trig angle (u-thetag-lambda) to work with (degrees) ? 33

Mass of ASSET excluding towers (kg) ? 31300

Linear mass density of conductor towers (kg/m) ? 7.3

Length of vertical (x) in-plane conductors (meters) ? 50

Length of horizontal (y) in-plane conductors (meters) ? 310

Length of nonconducting cross support towers (meters) ? 50

Length of vertical (x) cross conductors (meters) ? 20

Length of horizontal (y) cross conductors (meters) ? 20

Orbital mean motion (rad/sec) f

1.1316e-03

Total system mass (kg) f

37870

Principle moment of inertia A (kg-m-2) =

1.5374e+08

Principle moment of inertia B (kg-m-2) =

1.0236e+07

Principle moment of inertia C (kg-m-2) =

1.5872e+08

The (Fsys,Gsys) system is completely controllable.

The (FsysHsys) system is completely observable.

Weighting on the state weighting matrix Q ? 1000

Weighting on the control weighting matrix R ? 1
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What is the value of x to attain and track (a) ? 50

What is the value of y to attain and track (m) ? 0

What is the value of z to attain and track (a) ? 0

What is the value of psil to attain and track (rad) ? 0

What is the value of psi2 to attain and track (rad) ? 0

What is the value of psi3 to attain and track (rad) ? 0

What is the initial value of x (a) ? 100

What is the initial value of y (a) ? 0

What is the initial value of z (a) ? 0

What is the initial value of pail (rad) ? 0

What is the initial value of psi2 (rad) ? 0

What is the initial value of psi3 (rad) ? 0

How long of a time response to plot ? 10000

Number of time increments (data points) ? 500
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xl0-10  Roll Angle (psi2) vs Time
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Force in Vertical Direction (x) vs Time
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xl0-7  Moment About y-Axis vs Time
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Current Control Signal (Ilu) vs Time
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Current Control Signal (12e) vs Time
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Current Control Signal (I In) vs Time
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Current Control Signal (12n) vs Time
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Figure E.1. R-BAR Tracking Vehicle Trajectory in the X-Y Plane
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E.3 V-BAR Docking Approach Ezample

>> cont

Welcome to the POTV Controller Design and Performance Program.

Altitude of reference orbit (kilometers) ? 400

Trig angle (u-thatag-lambda) to work with (degrees) ? 33

Mass of ASSET excluding towers (kg) ? 31300

Linear mass density of conductor towers (kg/m) ? 7.3

Length of vertical Wx) in-plane conductors (metors) ? 310

Length of horizontal (y) in-plans conductors (meters) ? 50

Length of nonconducting cross support towers (meters) ? 50

Length of vertical (x) cross conductors (meters) ? 20

Length of horizontal (y) cross conductors (meters) ? 20

Orbital mean motion (rad/soc) =

1.1316e-03

Total system mass (kg) =

37870

Principle moment of inertia A (kg-m-2) a

3.5521e+06

Principle moment of inertia B (kg-m-2) =

1.8873e+08

Principle moment of inertia C (kg-m-2) =

1.8702e+08

The (Fsys,Gsys) system is completely controllable.

The (FsysHsys) system is completely observable.

Weighting on the state weighting matrix Q ? 100

Weighting on the control weighting matrix R ? 1
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What is the value of x to attain and track Wm) ? 0

What is the value of y to attain and track Cm) ? 50

What is the value of z to attain and track Wm) ? 0

What is the value of psil to attain and track (rad) ? 0

What is the value of psi2 to attain and track (rad) ? 0

What is the value of psi3 to attain and track (rad) ? 0

What is the initial value of x (m) ? 0

What is the initial value of y (m) ? 100

What is the initial value of z Wm) ? 0

What is the initial value of psil (rad) ? 0

What is the initial value of psi2 (rad) ? 0

What is the initial value of psi3 (rad) ? 0

How long of a time response to plot ? 10000

Number of time increments (data points) ? 500
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xl0-3  Out-of-Plane Position (z) vs Time
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Force in Vertical Direction (x) vs Time
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Force in Out-of-Plane (z) Direction vs Time
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xl0-4 Moment About y-Axis vs Time
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Current Control Signal (Ilu) vs Time
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Current Control Signal (I2e) vs Time
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Current Control Signal (IIn) vs Time
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Current Control Signal (12n) vs Time
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Thruster Control Signal (T) vs Time
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Figure E.2. V-BAR Tracking Vehicle Trajectory in the X-Y Plane
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Appendix F. Controller Design Program Listing

disp(' ');

disp('Welcome to the POTV Controller Design and Performance Program.');

disp(' ');

format short e

%define constants

G-6.67259e-11; %gravitational constant

Me=5.976e24; %mass of the earth in kg

re=6.378e06; %mean equatorial radius of earth in meters

m=8.1e15; Zmagnetic dipole moment of the earth in Tesla

d=-78.5*pi/180; %latitude of austral magnetic pole in radians

h=46.88; %length of ET modeled as a cylinder in meters

a=4.206; %radius of ET modeled as a cylinder in meters

Y.user enters tower lengths

altitude=input('Altitude of reference orbit (kilometers) ? ');

w=input('Trig angle (u-thetag-lambda) to work with (degrees) ? 1);

Net=input('Mass of ASSET excluding towers (kg) ? ');

p=input('Linear mass density of conductor towers (kg/m) ? ');

llinput('Length of vertical (x) in-plane conductors (meters) ? ');

12=input('Length of horizontal (y) in-plane conductors (meters) ? I);

lt=input('Length of nonconducting cross support towers (meters) ? );

lcl=input('Length of vertical (W) cross conductors (meters) ? );

lc2=input('Length of horizontal (y) cross conductors (meters) ? ');

%unit conversions

rO-re+altitudo*1000; Zorbital radius of reference orbit in meters

w-we*pi/180; %convert trig angle to radians
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%~calculations

n=sqrt(G*Me/r0-3); %orbital mean motion (reference orbit)

disp('Or~bital mean motion (radlsec) )

disp(n);

Mtot=Met+2*p*(11+12+lcl+1c2.lt); %MNass of entire POJTV system in kg

disp('Total system mass (kg)')

disp(Mtot);

Iet=Met*([(a-2/2) 0 0;0 ((3*a-2+h'-2)/12) 0;0 0 ((3*a-2+h-2)I12)]);

Ill=2*ll*p*([O 0 0;0 ((l1V2/12)+((l1+h)/2)-2) 0;0 0

((l112/12)+((11+h)/2)-2)]);

I12=2*l2*p*([((l2-2/l2)+((l2/2)+aY-2) 0 0;0 0 0;0 0

Ilt=2*lt*p*([((lt"2/12)+C(lt/2)+a)-2) 0 0;0 ((lt'2/12)+((lt/2).a)-2) 0;

0 0 0]);

Ilcl=2*lcl*p*([((lt+a)-2) 0 0;0 ((lci^2/12)+(1t+a)-2) 0;0 0 (1cl-2/12)]);

I1c2=2*1c2*p*([((lc2-2/12)+(lt+a)-2) 0 0;0 (lt~a)-2 0;0 0 (1c2-2/12)]);

I=Iet4Ill+I12+Ilt+Ilcl+I1c2; %Moment of inertia matrix in kg*m-2

A=I(1,1); %principle moments of inertia

B1I(2,2);

C=I(3,3);

disp('Principle moment of inertia A (kg-m-2)')

disp(A);

disp(QPrinciple moment of inertia B (kg-m-2) =)

disp(B);

disp('Principle moment of inertia C (kg-m-2) )

disp(C);

%set up system matrices FG,H,J (open-loop)

%system matrix
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Fsysin[O 1 0 0 0 0 0 0 0 0 0 0;

(3*n-2) 0 0 (2*ri) 0 0 0 0 0 0 0 0;

o 0 0 1 0 0 0 0 0 0 0 0;
o C-2*n) 0 0 0 0 0 0 0 0 0 0;
o 0 0 0 0 1 0 0 0 0 0 0;
o 0 0 0 (-(n-2)) 0 0 0 0 0 0 0;
o o 0 0 0 0 0 1 0 0 0 0;
o o 0 0 0 0 (-(n-2)*(C-B)/A) 0 0 C-n*(-A-B+C)/A) 0 0;
o o 0 0 0 0 0 0 0 1 0 0;
o o 0 0 ((3*zC-2)*(A-C)/(ro*B)) 0 0 (-n*(A4B-C)/B) ((4*n-2)*(A-C)/B) 0 0 0;
o o 0 0 0 0 0 0 0 0 0 1;
o (3*n/(2*r0)) ((3*n-2)*(B-A)/(rO*C)) 0 0 0 0 0 0 0 CC-3*n-2)*(B-A)/C) 0];

%input matrix

Gsys-(1/r0-3)*([0 0 0 0 0 0 0 0 0;

0 0 (-u*12*sin(d)/Mtot) (-m*12*Bin(d)/Mtot) 0 0 (-a*1c2*xin(d)/Mtot)

(-u*1c2*uin(d)/Mtot) 0;

o 0 0 0 0 0 0 0 0;
(z*11*sin(d)/Mtot) (m*11*sin(d)/Mtot) 0 0 (a*lcl*sin(d)/Mtot)

(n*lcl*sin(d)/Mtot) 0 0 0;

o o 0 0 0 0 0 0 0;
(a*11*coa(,d)*sin(w)/Mtot) (m*llscos(d)*sin(w)/Ntot)

(-2*u*12*coa(d)*coo(w) /Mtot) (-2*m*12*cou(d)*cos(w)/Ntot)

(R*lcl*con(d)*sin(w)/Mtot) (m*lcl*cou(d)*hin(w)/Ntot)

(-2*a*1c2*coa(d)*cos(v)/Mtot) (-2*m*1c2*coa(d)*cos(w)/Ntot) (rO'3/Mtot);

o o 0 0 0 0 0 0 0;
o 0 (-a*12-2*coo(d)*cos(v)/A) (&*12-2*cou(d)*cou(w)/A)
(-a*lt*lcl*sin(d)/A) Cmslt*lcl*sin(d)/A) 0 0 0;

o o 0 0 0 0 0 0 0;
(-u*11'-2*cos(d)*sin(w)/(2*B)) (a*11-2*con(d)*uin(w)/(2*B)) 0 0 0 0

(-a*lt*lc2*sin(d) ID) (a*lt*1c2*sin(d) ID) 0;
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0o0 0 0 0 0 0 0 0;

(m*ll"2*sin(d)/(2*C)) (-m*ll"2*sin(d)/(2*C)) (m,12-2,sin(d)/(2,C))

(-m*12"2*sin(d)/(2*C)) 0 0 0 0 0]);

%output matrix (selects positions and attitude angles only)

Hsys=[1 0 0 0 0 0 0 0 0 0 0 0;

o 0 1 0 0 0 0 0 0 0 0 0;

o 0 0 0 1 0 0 0 0 0 0 0;

o o 0 0 0 0 1 0 0 0 0 0;

o 0 0 0 0 0 0 0 1 0 0 0;

o o 0 0 0 0 0 0 0 0 1 0];

Jsys=zeros(6,9); %no fed-through control signals

%test controllability and observability

disp(' ');

Mc=ctrb(Fsys,Gsys);

if rank(Mc)==12,

disp('The (Fsys,Guys) system is completely controllable.');

else

disp('The (Fsys,Gsys) system has uncontrollable modes!');

end

disp(' ');

Mo-obsv(Fsys,Hsys);

if rank(Mo)==12,

disp('The (Fsys,Hsys) system is completely observable.');

else

disp('The (Fsys,Hnys) system has unobservable modes!');

end
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%derive LQR compensator K

%user enters state and control signal weightings

%normalized state weighting matrix

q-input('Weighting on the state weighting matrix Q ? ');

Q=q*•l 0 0 0 0 0 0 0 0 0 0 0;

o i 0 0 0 0 0 0 0 0 0 0;

0o0 1 0 0 0 0 0 0 0 0 0;

o 0 0 1 0 0 0 0 0 0 0 0;

o o 0 0 1 0 0 0 0 0 0 0;

o 0 0 0 0 1 0 0 0 0 0 0;

o 0 0 0 0 0 rO 0 0 0 0 0;

o 0 0 0 0 0 0 rO 0 0 0 0;

0 0 0 0 0 0 0 0 rO 0 0 0;

0 0 0 0 0 0 0 0 0 rO 0 0;

0 0 0 0 0 0 0 0 0 0 rO 0;

0 0 0 0 0 0 0 0 0 0 0 rO]);

r=input('Weighting on the control weighting matrix R ? ');

Rmr*ey.(9); %equal weighting on each control

K=lqr(FsysGys,Q,R);

%derive non-square pre-filter N using optimal pseudo-inverse

N--pinv(Hsys*inv(Fsys-Gsys*K)*Gsys);

%setup closed-loop system matrices

Fcl=Fsys-Gsys*K;

Gcl-iGys*m;

HcliNsys;

Jclazeros(6);
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%linear simulation of states due to initial condition and reference cmd

rx=input('What is the value of x to attain and track (W) ? ');

ry=input('What is the value of y to attain and track Wm) ? ');

rz=input('What is the value of z to attain and track (m) ? ');

rpsil=input('What is the value of psil to attain and track (rad) ? ');

rpsi2=input('What is the value of psi2 to attain and track (rad) ? ');

rpsi3=input('What is the value of psi3 to attain and track (rad) ? ');

xO=input('What is the initial value of x (a) ? ');

yO=input('What is the initial value of y (C) ?

zO=input('What is the initial value of z (C) ? ');

psilO=input('What is the initial value of psil (rad) ? ');

psi20=input('What is the initial value of psi2 (rad) ? ');

psi30-input('What is the initial value of psi3 (rad) ? ');

IO=[xO 0 yO 0 zO 0 psilO 0 psi20 0 psi30 0]';

taax=input('How long of a time response to plot ? ');

ntinc=input('Number of time increients (data points) ? ');

taO: (tmax/ntinc) :tmax;

tleng=length(t);

r=zeros(tleng,6); Y.construct reference comand

r(:,l)=rx*ones(tleng,1);

r(:,2)=ry*ones(tleng,l);

r(: .3)=rz*ones(tleng,I);

r(: ,4)=rpsil*ones(tleng,I);

r(: ,5)=rpsi2*ones(tleng,I);

r(: ,6)=rpsi3*ones(tleng,I);

(y,x]=lsim(Fcl,Gcl,Hcl,Jcl,r,t,IO); %outputs and states

u=(N*r'-K*x')'; %control vector includes 8 currents and thrusters

fu(Gxys*u')'; %forces

plot(t,y( :,I));
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title('Vertical In-Plane Position Wx vs Time');

xlabel(aseconds');

ylabel ('meters');

meta x;

pause;

plot(t,(Mtot*f(: ,2)));

title('Force in Vertical Direction Wx vs Time');

xlabel( 'seconds');

ylabel('Nevtons');

meta fx;

pause;

plot (t~y(: ,2));

title('Horizontaj. In-Plane Position (y) vs Time');

xlabel('seconds');

ylabel ('meters');

meta y;

pause;

plot~t,(Ntot*f(: ,4)));

title('Force in Horizontal (y) Direction vs Time');

xlabel('seconda');

ylabel('Iewtons');

meta fy;

pause;

plot(t,y(: ,3));

titlo('Out-of-Plmne Position (z) vs Time');

xlabeiC 'seconds');

Ylabel( 'Rotors');
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meta z;

pause;

plot(tOMtot*f(:,6)));

title('Force in Out-of-Plane Wz Direction vs Time');

xlabel('seconds');

ylabel('Nevtons');

meta fz;

pause;

plot(t~y(: ,4));

title('Yav Angle (psil) vs Time');

xlabel('seconds');

ylabel('radians');

meta pail;

pause;

plot(t,(A*f(: ,8)));

title('Noment About x-Axis vs Time');

xlabel('seconds');

ylabel('U-m');

meta ax;

pause;

plot(t,y(: ,5));

title('Roll Angle (psi2) vs Time');

xlabol('seconds');

ylabol('radians');

meta ps12;

pause;
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plot(t,(B*f(: ,1O)));

title('Moment About y-Axix vs Time');

xlabelQ seconds');

ylabel('N-m');

meta my;

pause;

plot (t,y(: ,6));

title('Pitch Angle (psi3) vs Time');

xlabel( 'second.');

ylabel('radians');

meta psi3;

pause;

plat~t,(C*f(: ,12)));

title('Koment About z-Axis va Time');

xlabel('seconda');

ylabel('I-m');

meta mz;

pause;

title('Current Control Signal (Ilu) vs Time');

xlabel( 'second.');

ylabel('amperea');

meta ilu;

pause;

plot(t~u(: ,2));

titlo('Current Control Signal (lid) vs Time');

xlabel( 'seconds');
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plot(t,u(: ,7));

title('Current Control Signal (12n) vs Tine');

xlabel( 'seconds');

ylabel( 'amperes');

meta i2n;

pause;

plot(t,u(: ,8));

title('Current Control Signal (12s) vs Time');

xlabel ('seconds');

ylabel( 'amperes');

meta i2s;

pause;

plot(t,u(: ,9));

title('Thruster Control Signal CT) vs Time');

xlabel('secondu');

ylabel( 'newtons');

meta t;
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ylabel( 'amperes');

meta ild;

pause;

plot(t~uC:,3));

title('Current Control Signal (M2) vs Time');

xlabel( 'seconds');

ylabel( 'amperes');

meta i2e;

pause;

plot(t,u(: ,4));

titleQ'Current Control Signal (12w) vs Time');

xlabel( 'seconds');

ylabelC'auperes');

meta i2w;

pause;

plotCt ,u(: .5));

title('Current Control Signal (Iun) vs Time');

xlabel( 'seconds');

ylabel( 'amperes');

meta u~n;

pause;

plot(t,u(: .6));

title('Current Control Signal (I1s) vs Time');

xlabel( 'seconds');

YlabelC'amperes');

Rota uts;

pause;
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